精英家教網(wǎng)如圖,梯形ABCD內(nèi)接于⊙O,AB∥CD,AB為直徑,DO平分∠ADC,則∠DAO的度數(shù)是
 
分析:由于AB∥CD,那么同旁內(nèi)角∠A和∠ADC互補(bǔ).由于OD平分∠ADC,可得∠ADO=∠A=∠CDO.聯(lián)立∠A+∠ADC=180°,可求得∠A=∠ADO=60°.
解答:解:∵DO平分∠ADC,
∴∠CDO=∠ODA;
∵OD=OA,
∴∠A=∠ADO=
1
2
∠ADC;
∵AB∥CD,
∴∠A+∠ADC=3∠A=180°,即∠A=∠ADO=60°.
故答案為:60°
點(diǎn)評:本題主要考查了圓周角定理、平行線的性質(zhì)、角平分線的定義、等角對等邊等知識.屬于基礎(chǔ)題之列.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E.
(1)求證:AB2=DE•BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)B引⊙O的切線分別交DA、CA的延長線于E、F,已知BC=8,CD=5,AF=6,則EF=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)【選修4-1:幾何證明選講】
如圖,梯形ABCD內(nèi)接于圓O,AD∥BC,且AB=CD,過點(diǎn)B引圓O的切線分別交DA、CA的延長線于點(diǎn)E、F.
(1)求證:CD2=AE•BC;
(2)已知BC=8,CD=5,AF=6,求EF的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:專項(xiàng)題 題型:解答題

如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E。
(1)求證:AB2=DE·BC;
(2)若BD=9,AB=6,BC=9,求切線PC的長。

查看答案和解析>>

同步練習(xí)冊答案