甲、乙兩名射擊運動員,甲射擊一次命中10環(huán)的概率為,乙射擊一次命中10環(huán)的概率為s,若他們各自獨立地射擊兩次,設乙命中10環(huán)的次數(shù)為ξ,且ξ的數(shù)學期望Eξ=,表示甲與乙命中10環(huán)的次數(shù)的差的絕對值.

    (1)求s的值及的分布列,

    (2)求的數(shù)學期望.

解:(1)依題意知ξ∽B(2,s),故Eξ=2s=,

   ∴s=.  

   的取值可以是0,1,2.

甲、乙兩人命中10環(huán)的次數(shù)均為0次的概率是

甲、乙兩人命中10環(huán)的次數(shù)均為1次的概率是,

甲、乙兩人命中10環(huán)的次數(shù)均為2次的概率是

(=0)=

甲命中10環(huán)的次數(shù)為2次且乙命中10環(huán)的次數(shù)為0次的概率是,

甲命中10環(huán)的次數(shù)為0次且乙命中10環(huán)的次數(shù)為2次的概率是

(=2)==,                             

(=1)=1(=0)(=2)=. 

的分布列是

0

1

2

(2)E=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

甲、乙兩名射擊運動員參加某大型運動會的預選賽,他們分別射擊了5次,成績如下表(單位:環(huán))
10 8 9 9 9
10 10 7 9 9
如果甲、乙兩人只有1人入選,則入選的應是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

17、甲、乙兩名射擊運動員進行射擊選拔比賽,已知甲、乙兩運動員射擊的環(huán)數(shù)穩(wěn)定在6,7,8,9,10環(huán),其射擊比賽成績的分布列如下:
甲運動員:

乙運動員:

(Ⅰ)若甲、乙兩運動員各射擊一次,求同時擊中9環(huán)以上(含9環(huán))的概率;
(Ⅱ)若從甲、乙兩運動員中只能挑選一名參加某項國際比賽,你認為讓誰參加比賽較合適?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一次運動會中甲、乙兩名射擊運動員各射擊十次的成績(環(huán))如下:
甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;
乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;
(1)用莖葉圖表示甲,乙兩個人的成績;
(2)分別計算兩個樣本的平均數(shù)
.
x
和標準差s,并根據計算結果估計哪位運動員的成績比較穩(wěn)定.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩名射擊運動員參加某大型運動會的預選賽,他們分別射擊了5次,成績如下表(單位:環(huán)),如果甲、一兩人中只有1人入選,計算他們的平均成績及方差.問入選的最佳人選應是誰?
10 8 9 9 9
10 10 7 9 9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩名射擊運動員,甲命中10環(huán)的概率為
1
2
,乙命中10環(huán)的概率為p,若他們各射擊兩次,甲比乙命中10環(huán)次數(shù)多的概率恰好等于
7
36
,則p=
2
3
2
3

查看答案和解析>>

同步練習冊答案