A. | 10 | B. | -10 | C. | -14 | D. | 無法確定 |
分析 根據(jù)f(x)=ax3+bx+$\frac{c}{x}$-2可構(gòu)造g(x)=f(x)+2=ax3+bx+$\frac{c}{x}$,則易得g(x)為奇函數(shù)再根據(jù)奇函數(shù)的性質(zhì)可得g(-2006)=-g(2006)就可求得f(-2006).
解答 解:∵f(x)=ax3+bx+$\frac{c}{x}$-2
∴令g(x)=f(x)+2=ax3+bx+$\frac{c}{x}$
則由于定義域為R關(guān)于原點對稱且g(-x)=-(ax3+bx+$\frac{c}{x}$)=-g(x)
∴g(x)為奇函數(shù)
∴g(-2006)=-g(2006)
∴f(-2006)+2=-(f(2006)+2)
∵f(-2006)=-14.
故選:C.
點評 本題主要考查了函數(shù)奇偶性的性質(zhì).解題的關(guān)鍵是要構(gòu)造出奇函數(shù)g(x)=f(x)+2=ax3+bx+$\frac{c}{x}$.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 60°或120° | B. | 60° | C. | 30°或150° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com