正方形的邊長為2,分別為邊的中點,是線段的中點,如圖,把正方形沿折起,設(shè)

(1)求證:無論取何值,不可能垂直;
(2)設(shè)二面角的大小為,當(dāng)時,求的值.
(1)不可能垂直; (2)的值為

試題分析:(1)假設(shè),                                     1分
又因為,,所以平面,          3分
所以,又,所以,              5分
這與矛盾,所以假設(shè)不成立,所以不可能垂直;   6分
(2)分別以軸,過點垂直平面向上為軸,如圖建立坐標(biāo)系,

設(shè)平面的一個法向量為,

,     7分
,   8分
設(shè)平面的一個法向量為,
,,       9分
,   10分
                11分
=,                              12分
,                                             13分
所以當(dāng)時,的值為.                     14分
點評:中檔題,立體幾何問題中,平行關(guān)系、垂直關(guān)系,角、距離、面積、體積等的計算,是常見題型,基本思路是將空間問題轉(zhuǎn)化成為平面問題,利用平面幾何知識加以解決。要注意遵循“一作,二證,三計算”。利用“向量法”,通過建立空間直角坐標(biāo)系,往往能簡化解題過程。對于折疊問題,首先要弄清“變”與“不變”的幾何元素。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,六棱錐的底面是邊長為1的正六邊形,底面。
(Ⅰ)求證:平面平面
(Ⅱ)若直線PC與平面PDE所成角為,求三棱錐高的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在直角梯形中,AD//BC, =900,BA="BC" 把ΔBAC沿折起到的位置,使得點在平面ADC上的正投影O恰好落在線段上,如圖2所示,點分別為線段PC,CD的中點.

(I) 求證:平面OEF//平面APD;
(II)求直線CD與平面POF;
(III)在棱PC上是否存在一點,使得到點P,O,C,F四點的距離相等?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,

(I)求證
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是(  )
A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.
B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.
C.有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱.
D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC 中,∠C =90°,∠B =30°,AC=1,M 為 AB 中點,將△ACM 沿 CM 折起,使 A、B 間的距離為 ,則 M 到面 ABC 的距離為(  )

(A)
(B)
(C)1
(D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個正方體的展開圖如圖所示,A、B、C、D為原正方體的頂點,則在原來的正方體中( )

A.         B.相交
C.         D.所成的角為 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱中,

(1)求異面直線 與所成角的大;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m、n是兩條不重合的直線,α、β是兩個不重合的平面,下列命題中正確的是(  )
A.若m∥α,n∥β,α∥β,則m∥nB.若m∥n,nÌα,m(/α,則m∥α
C.若α⊥β,m⊥α,則m∥βD.若m⊥α,nÌβ,m⊥n,則α⊥β

查看答案和解析>>

同步練習(xí)冊答案