【題目】[選修4-5:不等式選講]

已知函數(shù).

(Ⅰ)當(dāng)時(shí),求的解集;

(Ⅱ)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ) (Ⅱ)

【解析】試題分析:(Ⅰ)利用零點(diǎn)分段去絕對值求解即可;

(Ⅱ)當(dāng)時(shí), 恒成立,即顯然當(dāng)時(shí),不等式恒成立,當(dāng)時(shí),討論和定義域的關(guān)系即可.

試題解析:

(Ⅰ)當(dāng)時(shí),由,可得

①或②或

解①求得,解②求得,解③求得,

綜上可得不等式的解集為

(Ⅱ)∵當(dāng)時(shí), 恒成立,即,

當(dāng)時(shí), ;

當(dāng)時(shí),

,即時(shí), , ,所以;

,即時(shí), ,所以;

,即時(shí), 時(shí),不等式不成立

綜上,

點(diǎn)晴:含絕對值不等式的解法有兩個(gè)基本方法,一是運(yùn)用零點(diǎn)分區(qū)間討論,二是利用絕對值的幾何意義求解.第二問將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時(shí)強(qiáng)化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四面體PABC中,DE、F分別是AB、BC、CA的中點(diǎn),下列四個(gè)結(jié)論不成立的是 (  )

A. BC∥平面PDF B. DF⊥平面PAE

C. 平面PDF⊥平面PAE D. 平面PDE⊥平面ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的中心在原點(diǎn),焦點(diǎn)為,且離心率.

(1)求雙曲線的方程;

(2)求以點(diǎn)為中點(diǎn)的弦所在的直線方程.

【答案】(1);(2).

【解析】

1)根據(jù)焦點(diǎn)坐標(biāo)求得,根據(jù)離心率及求得的值,進(jìn)而求得雙曲線的標(biāo)準(zhǔn)方程.2)設(shè)出兩點(diǎn)的坐標(biāo),利用點(diǎn)差法求得弦所在直線的斜率,再由點(diǎn)斜式求得弦所在的直線方程.

(1) 由題可得,∴,,

所以雙曲線方程 .

(2)設(shè)弦的兩端點(diǎn)分別為,,

則由點(diǎn)差法有: , 上下式相減有:

又因?yàn)?/span>為中點(diǎn),所以,,

,所以由直線的點(diǎn)斜式可得,

即直線的方程為.

經(jīng)檢驗(yàn)滿足題意.

【點(diǎn)睛】

本小題主要考查雙曲線標(biāo)準(zhǔn)方程的求法,考查利用點(diǎn)差法求解有關(guān)弦的中點(diǎn)有關(guān)的問題,屬于中檔題.

型】解答
結(jié)束】
19

【題目】某投資公司計(jì)劃投資,兩種金融產(chǎn)品,根據(jù)市場調(diào)查與預(yù)測,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤與投資金額的函數(shù)關(guān)系為.(注:利潤與投資金額單位:萬元)

(1)該公司已有100萬元資金,并全部投入,兩種產(chǎn)品中,其中萬元資金投入產(chǎn)品,試把,兩種產(chǎn)品利潤總和表示為的函數(shù),并寫出定義域;

(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)動點(diǎn)到兩定點(diǎn)的距離之和為4.

(Ⅰ)求動點(diǎn)的軌跡的方程;

(Ⅱ)已知直線的傾斜角均為,直線過坐標(biāo)原點(diǎn)且與曲線相交于, 兩點(diǎn),直線過點(diǎn)且與曲線是交于, 兩點(diǎn),求證:對任意, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一只小蜜蜂位于數(shù)軸上的原點(diǎn)處,小蜜蜂每一次具有只向左或只向右飛行一個(gè)單位或者兩個(gè)單位距離的能力,且每次飛行至少一個(gè)單位.若小蜜蜂經(jīng)過5次飛行后,停在數(shù)軸上實(shí)數(shù)3位于的點(diǎn)處,則小蜜蜂不同的飛行方式有多少種?( )

A. 5 B. 25 C. 55 D. 75

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為, 的圖像關(guān)于軸對稱.

1)求實(shí)數(shù), 的值.

2)設(shè),則是否存在區(qū)間使得函數(shù)在區(qū)間上的值域?yàn)?/span>?若存在,求實(shí)數(shù)的取值范圍若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示值域?yàn)?/span>的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個(gè)正數(shù),使得函數(shù)的值域包含于區(qū)間。例如,當(dāng),時(shí),。則下列命題中正確的是:( )

A.設(shè)函數(shù)的定義域?yàn)?/span>,則“”的充要條件是“,,

B.函數(shù)的充要條件是有最大值和最小值

C.若函數(shù),的定義域相同,且,,則

D.若函數(shù)有最大值,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方體ABCD-A1B1C1D1中,二面角A-BD1-B1的大小是__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù))以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,并取與直角坐標(biāo)系相同的單位長度,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

(1)求曲線, 的直角坐標(biāo)方程;

(2)若分別是曲線上的任意點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊答案