7.已知f(x)=ax+2a+1,當(dāng)x∈[-1,1]時(shí),f(x)的值有正有負(fù),則實(shí)數(shù)a的取值范圍為(-1,-$\frac{1}{3}$).

分析 函數(shù)f(x)=ax+2a+1在x∈[-1,1]內(nèi)是單調(diào)函數(shù),從而f(-1)f(1)<0,由此能求出實(shí)數(shù)a的取值范圍.

解答 解:∵函數(shù)f(x)=ax+2a+1,當(dāng)x∈[-1,1]時(shí),f(x)的函數(shù)值有正有負(fù),
∴$\left\{\begin{array}{l}{f(-1)=-a+2a+1<0}\\{f(1)=a+2a+1>0}\end{array}\right.$,
或$\left\{\begin{array}{l}{f(-1)=-a+2a+1>0}\\{f(1)=a+2a+1<0}\end{array}\right.$,
解得-1<a<-$\frac{1}{3}$,
∴實(shí)數(shù)a的取值范圍是(-1,-$\frac{1}{3}$).
故答案為:(-1,-$\frac{1}{3}$).

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖所示,在半徑為7,圓心角為$\frac{π}{4}$的扇形鐵皮ADE上截去一個(gè)半徑為3的小扇形ABC,則剩下扇環(huán)的面積為5π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知命題p:?x∈R(x≠0),x+$\frac{1}{x}$≥2,則¬p為( 。
A.?x0∈R(x0≠0),x0+$\frac{1}{{x}_{0}}$≤2B.?x0∈R(x0≠0),x0+$\frac{1}{{x}_{0}}$<2
C.?x∈R(x≠0),x+$\frac{1}{x}$≤2D.?x∈R(x≠0),x+$\frac{1}{x}$<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知圓C:(x-3)2+(y-4)2=4,直線l1過(guò)定點(diǎn)A(1,0)
(1)若直線l1與圓相切,切點(diǎn)為B,求線段AB的長(zhǎng)度;
(2)若l1與圓相交于P,Q兩點(diǎn),線段PQ的中點(diǎn)為M,又l1與l2:x+2y+2=0的交點(diǎn)為N,判斷AM•AN是否為定值,若是,求出定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某高級(jí)中學(xué)共有學(xué)生4000名,各年級(jí)男、女生人數(shù)如表:
高一年級(jí)高二年級(jí)高三年級(jí)
女生xy642
男生680z658
已知在全校學(xué)生中隨機(jī)抽取1名,抽到高一年級(jí)女生的概率是0.15.
(1)求高一女生人數(shù)x和高二學(xué)生總數(shù);
(2)現(xiàn)用分層抽樣的方法在全校抽取200名學(xué)生,問(wèn)應(yīng)在高二年級(jí)抽取多少名?
(3)已知y≥705,z≥705,求高二年級(jí)中男生比女生多的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{1}{2}$(n2+3n).(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.從1,2,3,4,5,6中可重復(fù)取兩個(gè)數(shù)構(gòu)成一個(gè)兩位數(shù),則這個(gè)兩位數(shù)大于30的概率為(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若集合A={x|x2-x≥0},則A=(-∞,0]∪[1,+∞);∁R(A)=(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在△ABC中,BD為AC邊上的高,BD=1,BC=AD=2,沿BD將△ABD翻折,使得∠ADC=30°,得到幾何體B-ACD.

(1)求證:AC⊥BD;
(2)求AB與平面BCD所成角的正切值;
(3)求二面角D-AB-C的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案