圓心在軸上,且過兩點的圓的方程為                   .

試題分析:由題意設所求圓的方程為,∵圓過兩點,∴,∴,∴所求圓的方程為
點評:用待定系數(shù)法求圓的方程時,要盡量注意特殊位置圓的特點及規(guī)律性,屬基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知直線截圓心在點的圓所得弦長為.
(1)求圓的方程;
(2)求過點的圓的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,,,四點共圓,的延長線交于點,點的延長線上.

(1)若,,求的值;
(2)若,求證:線段,成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系xOy中,圓C的方程為x²+y²-8x+15=0,若直線y=kx-2上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,則k的最大值是                

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知圓過點,圓心在直線上,且半徑為5,則圓的方程為_____

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如下圖,動點C在⊙O的弦AB上運動,AB=,連接OC,CD⊥OC交⊙O于D,則CD的最大值為_____________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,已知圓和圓.
(1)若直線經(jīng)過點(2,-1)和圓的圓心,求直線的方程;
(2)若點(2,-1)為圓的弦的中點,求直線的方程;
(3)若直線過點,且被圓截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

上的點到直線距離的最大值是(    )       
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(理)已知點是圓上的動點.
(1)求點到直線的距離的最小值;
(2)若直線與圓相切,且xy軸的正半軸分別相交于兩點,求的面積最小時直線的方程;

查看答案和解析>>

同步練習冊答案