【題目】已知直線l1:4x﹣3y+11=0和直線l2:x=﹣1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是(
A.
B.2
C.
D.3

【答案】D
【解析】解:如圖所示,
過點P分別作PM⊥l1 , PN⊥l2 , 垂足分別為M,N.
設拋物線的焦點為F(1,0),由拋物線的定義可得|PN|=|PF|,
∴|PM|+|PN|=|PM|+|PF|,當三點M,P,F(xiàn)共線時,
|PM|+|PF|取得最小值.
其最小值為點F到直線l1的距離,∴|FM|=
故選:D.
如圖所示,過點P分別作PM⊥l1 , PN⊥l2 , 垂足分別為M,N.設拋物線的焦點為F,由拋物線的定義可得|PN|=|PF|,求|PM|+|PN|轉化為求|PM|+|PF|,當三點M,P,F(xiàn)共線時,|PM|+|PF|取得最小值.利用點到直線的距離公式即可得出.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】直線l1 , l2分別過點A(3 ,2),B( ,6),它們分別繞點A,B旋轉,但始終保持l1⊥l2 . 若l1與l2的交點為P,坐標原點為O,則線段OP長度的取值范圍是( )
A.[3,9]
B.[3,6]
C.[6,9]
D.[9,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

)當時,求在區(qū)間上的最大值和最小值.

)解關于的不等式

)當時,若存在,使得,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對某班50人進行智力測驗,其得分如下:

48,64,52,86,71,48,64,41,86,79,71,68,82,84,68,64,62,68,81,57,90,52,74,73,56,78,47,66,55,64,56,88,69,40,73,97,68,56,67,59,70,52,79,44,55,69,62,58,32,58.

(1)這次測試成績的最大值和最小值各是多少?

(2)[30,100)平分成7個小區(qū)間,試畫出該班學生智力測驗成績的頻數(shù)分布圖.

(3)分析這個頻數(shù)分布圖,你能得出什么結論?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數(shù)據(jù)

單價x/

8

8.2

8.4

8.6

8.8

9

銷量y/

90

84

83

80

75

68

(1)求線性回歸方程=x+其中=-20, =- .

(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系且該產品的成本是4/,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,a2n=n﹣an , a2n+1=an+1,則a1+a2+a3+…+a100=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面 為等邊三角形, , 分別為的中點.

(1)求證: 平面.

(2)求證:平面平面.

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=px﹣ ﹣2lnx.
(Ⅰ)若p=2,求曲線f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)在其定義域內為增函數(shù),求正實數(shù)p的取值范圍;
(Ⅲ)設函數(shù)g(x)= (e為自然對數(shù)底數(shù)),若在[1,e]上至少存在一點x0 , 使得f(x0)>g(x0)成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線 =1(a>0,b>0),A1 , A2是實軸頂點,F(xiàn)是右焦點,B(0,b)是虛軸端點,若在線段BF上(不含端點)存在不同的兩點p1(i=1,2),使得△PiA1A2(i=1,2)構成以A1A2為斜邊的直角三角形,則雙曲線離心率e的取值范圍是(
A.( ,+∞)
B.( ,+∞)
C.(1,
D.( ,

查看答案和解析>>

同步練習冊答案