A. | $\frac{f(2)}{f(0)}>2,\frac{f(0)}{{f({-2})}}>2$ | B. | f(2)>2f(0)>4f(-2) | C. | $\frac{f(2)}{f(0)}<2,\frac{f(0)}{{f({-2})}}<2$ | D. | f(2)<2f(0)<4f(-2) |
分析 構(gòu)造函數(shù)g(x)=$\frac{f(2x)}{{2}^{x}}$,求出函數(shù)的單調(diào)性,從而求出函數(shù)值的大小即可.
解答 解:構(gòu)造函數(shù)g(x)=$\frac{f(2x)}{{2}^{x}}$
∴g′(x)=$\frac{{2}^{x}(2f′(2x)-ln2f(2x))}{{2}^{2x}}$,
∵${f^'}(2x)>\frac{ln2}{2}f(2x)$恒成立,
∴2f′(2x)>ln2f(2x)恒成立,
∴g′(x)>0,
∴g(x)在R上為增函數(shù),
∴g(1)>g(0)>g(-1),
∴$\frac{f(2)}{2}$>$\frac{f(0)}{{2}^{0}}$>$\frac{f(-2)}{{2}^{-1}}$,
∴f(2)>2f(0)>4f(-2),
故選:B
點(diǎn)評 本題考查了函數(shù)的單調(diào)性問題,考查導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)是解題的關(guān)鍵,本題是一道中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -7≤f(3)≤26 | B. | -4≤f(3)≤15 | C. | -1≤f(3)≤20 | D. | $-\frac{28}{3}≤f(3)≤\frac{35}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | .$\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | .$\frac{{2\sqrt{2}}}{3}$ | D. | .$-\frac{{2\sqrt{2}}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com