已知二次函數(shù)f(x)是定義在R上的偶函數(shù),且關(guān)于x的不等式f(x)<4x的解集為{x|1<x<3}.
(Ⅰ)求f(x)的解析式;
(Ⅱ)設(shè)F(x)=f(x)+bx,且當(dāng)x∈[-1,2]時(shí),函數(shù)F(x)的最小值為1,求實(shí)數(shù)b的值.
(I)設(shè)f(x)=ax2+bx+c(a≠0),由f(x)是偶函數(shù)知f(x)的圖象關(guān)于y軸對(duì)稱(chēng),
-
b
2a
=0
,即b=0,故f(x)=ax2+c.…(1分)
∵不等式f(x)<4x的解集為{x|1<x<3},
∴a>0且x1=1,x2=3是方程f(x)-4x=0即ax2-4x+c=0的兩根.
由韋達(dá)定理,得
1+3=
4
a
1×3=
c
a
,
解得:a=1,c=3.…(5分)
∴f(x)=x2+3.…(6分)
(II)由( I)知,F(x)=x2+bx+3=(x+
b
2
)2+3-
b2
4
,對(duì)稱(chēng)軸x=-
b
2
.…(7分)
下面分類(lèi)討論:
①當(dāng)-
b
2
≥2
,即b≤-4時(shí),F(xiàn)(x)在[-1,2]上為減函數(shù),
∴F(x)min=F(2)=2b+7=1,得b=-3(舍去).…(9分)
②當(dāng)-
b
2
∈(-1,2)
,即-4<b<2時(shí),F(x)min=F(-
b
2
)=-
b2
4
+3=1
,
b=-2
2
b=2
2
(舍去).…(11分)
③當(dāng)-
b
2
≤-1
,即b≥2時(shí),F(xiàn)(x)在[-1,2]上為增函數(shù),
∴F(x)min=F(-1)=4-b=1,得b=3.…(13分)
綜上所述,b=-2
2
或b=3為所求.…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

二次函數(shù)的圖象經(jīng)過(guò)三點(diǎn)
(1)求函數(shù)的解析式;(2)求函數(shù)在區(qū)間上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)f(x)=x2–2ax+2,當(dāng)x∈[–1,+∞)時(shí),f(x)>a恒成立,求a的取值范圍 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知a,b,c是實(shí)數(shù),函數(shù)f(x)=ax2+bx+c,g(x)=ax+b,當(dāng)-1≤x≤1時(shí)|f(x)|≤1.
(1)證明:|c|≤1;
(2)證明:當(dāng)-1≤x≤1時(shí),|g(x)|≤2;
(3)設(shè)a>0,有-1≤x≤1時(shí),g(x)的最大值為2,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若關(guān)于x的不等式x2-4x-2-a>0在區(qū)間(1,4)內(nèi)有解,則實(shí)數(shù)a的取值范圍是( 。
A.a(chǎn)<-2B.a(chǎn)>-2C.a(chǎn)>-6D.a(chǎn)<-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=ax2-c,且-4≤f(1)≤-1,-1≤f(2)≤5,求f(4)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

當(dāng)x∈(3,4)時(shí),不等式x2+mx+4<0恒成立,則m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=-x2+(2a-1)|x|+1的定義域被分成了四個(gè)不同的單調(diào)區(qū)間,則實(shí)數(shù)a的取值范圍是(  )
A.a(chǎn)>
2
3
B.
1
2
<a<
3
2
C.a>
1
2
D.a<
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)y=x2-bx+2(x∈(-∞,1))是單調(diào)函數(shù),則b的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案