已知函數(shù),,且).
(1)討論函數(shù)的單調(diào)性;
(2)若,關(guān)于的方程有唯一解,求a的值.
【解】 (1)由已知得x>0且.
當(dāng)k是奇數(shù)時(shí),,則f(x)在(0,+)上是增函數(shù); ……………3分
當(dāng)k是偶數(shù)時(shí),則. ……………………5分
所以當(dāng)x時(shí),,當(dāng)x時(shí),.
故當(dāng)k是偶數(shù)時(shí),f (x)在上是減函數(shù),在上是增函數(shù).………………7分
(2)若,則.
記g (x) = f (x) – 2ax = x 2 – 2 a xlnx – 2ax, ,
若方程f(x)=2ax有唯一解,即g(x)=0有唯一解; …………………………9分
令,得.因?yàn)?sub>,
所以(舍去),. ……………………11分
當(dāng)時(shí),,在是單調(diào)遞減函數(shù);
當(dāng)時(shí),,在上是單調(diào)遞增函數(shù).
當(dāng)x=x2時(shí), ,. …………………………12分
因?yàn)?sub>有唯一解,所以.
則 即 …………………………13分
兩式相減得因?yàn)?i>a>0,所以.……14分
設(shè)函數(shù),
因?yàn)樵?i>x>0時(shí),h (x)是增函數(shù),所以h (x) = 0至多有一解.
因?yàn)?i>h (1) = 0,所以方程(*)的解為x 2 = 1,從而解得…………15分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)滿足,且
(1)當(dāng)時(shí),求的表達(dá)式;
(2)設(shè),,求證:;w.w.w.k.s.5.u.c.o.m
(3)設(shè),對(duì)每一個(gè),在與之間插入個(gè),得到新數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試問是否存在正整數(shù),使?若存在求出的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆福建省高三第五次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知函數(shù),若且,則下列不等式中正確的是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆度黑龍江哈三中高三上學(xué)期期中理科數(shù)學(xué)試卷 題型:填空題
已知函數(shù)滿足,且的導(dǎo)函數(shù),則的解集為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河北省廊坊市高二下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分14分)
已知函數(shù),,且.
(1)試求所滿足的關(guān)系式;
(2)若,方程有唯一解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(xué)(理) 題型:解答題
(本題滿分14分)
已知函數(shù), ,且.
(Ⅰ)若,求的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值;
(Ⅲ)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com