如圖所示,點A(p,o)(p>0),點R在y軸上運動,點T在x軸上,N為動點,且
(I)設(shè)動點N的軌跡為曲線C,求曲線C的方程;
(II)設(shè)P,Q是曲線C上的兩個動點,M(x,y)是曲線C上一定點,若,試證明直線PQ經(jīng)過定點,并求出該定點的坐標.

【答案】分析:(I)設(shè)N(x,y),由知R是TN的中點,則T(-x,0),R(0,),由,知,由此能求出點N的軌跡曲線C的方程.
(II)設(shè),則.由,得PM⊥QM,kMP•kMQ=-1,,由此能推導(dǎo)出直線PQ經(jīng)過定點(x+4p,-y).
解答:解:(I)設(shè)N(x,y),由知R是TN的中點,
則T(-x,0),R(0,),

,
整理,得y2=4px(p>0).
故點N的軌跡曲線C的方程是y2=4px(p>0).
(II)設(shè),
,

,得PM⊥QM,
∴kMP•kMQ=-1,
,
從而(-1)(y+y1)(y+y2)=16p2
∴(y1+y2)y+y1y2+y2+16p2=0.①
直線PQ的方程為
即(y1+y2)y-y1y2-4px=0.
①可變?yōu)椋▂1+y2)(-y)-y1y2-4p(x+4p)=0,
∴直線PQ經(jīng)過定點(x+4p,-y).
點評:本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與拋物線的相關(guān)知識,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強,難度大,易出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,點A(1,0).點R在y軸上運動,T在x軸上,N為動點,且
RT
RA
=0,
RN
+
RT
=0,
(1)設(shè)動點N的軌跡為曲線C,求曲線C的方程;
(2)過點B(-2,0)的直線l與曲線C交于點P、Q,若在曲線C上存在點M,使得△MPQ為以PQ為斜邊的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點A(p,o)(p>0),點R在y軸上運動,點T在x軸上,N為動點,且
RT
RA
=0,
RN
+
RT
=0

(I)設(shè)動點N的軌跡為曲線C,求曲線C的方程;
(II)設(shè)P,Q是曲線C上的兩個動點,M(x0,y0)是曲線C上一定點,若
PM
QM
=0
,試證明直線PQ經(jīng)過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,點A是橢圓C:的短軸位于軸下方的端點,過A作斜率為1的直線交橢圓于B點,點P在軸上,且BP//軸,;

(1)若點P的坐標為(0,1),求橢圓C的方程;

(2)若點P的坐標為(0,),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省茂名市高州市長坡中學(xué)高三(下)期初數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,點A(1,0).點R在y軸上運動,T在x軸上,N為動點,且=0,
(1)設(shè)動點N的軌跡為曲線C,求曲線C的方程;
(2)過點B(-2,0)的直線l與曲線C交于點P、Q,若在曲線C上存在點M,使得△MPQ為以PQ為斜邊的直角三角形,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案