直線與橢圓交于,兩點,已知
,,若且橢圓的離心率,又橢圓經(jīng)過點,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點(為半焦距),求直線的斜率的值;
科目:高中數(shù)學 來源: 題型:
x2 |
25 |
y2 |
16 |
PF1 |
PF2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(09年東城區(qū)期末理)(13分)
已知橢圓的對稱軸為坐標軸,且拋物線的焦點是橢圓的一個焦點,又點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線的方向向量為,若直線與橢圓交于、兩點,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知橢圓的方程為,點的坐標滿足過點的直線與橢圓交于、兩點,點為線段的中點,求:
(1)點的軌跡方程;
(2)點的軌跡與坐標軸的交點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年安徽省安慶市高三模擬考試(三模)理科數(shù)學試卷(解析版) 題型:解答題
已知焦點在軸上的橢圓和雙曲線的離心率互為倒數(shù),它們在第一象限交點的坐標為,設直線(其中為整數(shù)).
(1)試求橢圓和雙曲線的標準方程;
(2)若直線與橢圓交于不同兩點,與雙曲線交于不同兩點,問是否存在直線,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2010-2011學年重慶市主城八區(qū)高三第二次學業(yè)調(diào)研抽測文科數(shù)學卷 題型:解答題
設橢圓:的左、右焦點分別為、,上頂點為,在軸負半軸上有一點,滿足,且⊥.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過、、三點的圓恰好與直線相切,求橢圓的方程;
(Ⅲ)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,
若點使得以為鄰邊的平行四邊形是菱形,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com