【題目】已知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)討論的單調(diào)性.

【答案】(1); (2).

【解析】

(1) 欲求在點(2,f(2))處的切線方程,只須求出其斜率的值即可,故先利用導數(shù)求出在x=2處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決;

(2)求出a分類討論,解不等式即可得到的單調(diào)性與極值點.

(1)當時,,則,

所以所求切線的斜率為.

故所求的切線方程為,即.

(2)的定義域為,

.

①當時,

時,;當時,.

所以上單調(diào)遞減,在上單調(diào)遞增.

②當時,令,得.

(i)當時,.

時,,當時,.

所以上單調(diào)遞增,在上單調(diào)遞減.

(ii)當時,恒成立,

所以上單調(diào)遞增.

(iii)當時,,

時,;當時,.

所以上單調(diào)遞增,在上單調(diào)遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為節(jié)能環(huán)保,推進新能源汽車推廣和應用,對購買純電動汽車的用戶進行財政補貼,財政補貼由地方財政補貼和國家財政補貼兩部分組成. 某地補貼政策如下(表示純電續(xù)航里程):

三個純電動汽車店分別銷售不同品牌的純電動汽車,在一個月內(nèi)它們的銷售情況如下:

(每位客戶只能購買一輛純電動汽車

(1)從上述購買純電動汽車的客戶中隨機選一人,求此人購買的是店純電動汽車且享受補貼不低于3.5萬元的概率;

(2)從上述兩個純電動汽車店的客戶中各隨機選一人,求恰有一人享受5萬元財政補貼的概率;

(3)從上述三個純電動汽車店的客戶中各隨機選一人, 這3個人享受的財政補貼分別記為. 求隨機變量的分布列. 試比較數(shù)學期望的大。槐容^方差 的大小. (只需寫出結論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,令,若,的兩個極值點,且,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】洛薩科拉茨Collatz,是德國數(shù)學家,他在1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半;如果n是奇數(shù),則將它乘3加,不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個數(shù)列:6,3,10,5,16,8,4,2,對科拉茨猜想,目前誰也不能證明,更不能否定現(xiàn)在請你研究:如果對正整數(shù)首項按照上述規(guī)則施行變換注:1可以多次出現(xiàn)后的第八項為1,則n的所有可能的取值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】洛薩科拉茨Collatz,是德國數(shù)學家,他在1937年提出了一個著名的猜想:任給一個正整數(shù)n,如果n是偶數(shù),就將它減半;如果n是奇數(shù),則將它乘3加,不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到如初始正整數(shù)為6,按照上述變換規(guī)則,我們得到一個數(shù)列:6,3,10,5,16,8,4,2,對科拉茨猜想,目前誰也不能證明,更不能否定現(xiàn)在請你研究:如果對正整數(shù)首項按照上述規(guī)則施行變換注:1可以多次出現(xiàn)后的第八項為1,則n的所有可能的取值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國武漢于20191018日至20191027日成功舉辦了第七屆世界軍人運動會.來自109個國家的9300余名運動員同臺競技.經(jīng)過激烈的角逐,獎牌榜的前3名如下:

國家

金牌

銀牌

銅牌

獎牌總數(shù)

中國

133

64

42

239

俄羅斯

51

53

57

161

巴西

21

31

36

88

某數(shù)學愛好者采用分層抽樣的方式,從中國和巴西獲得金牌選手中抽取了22名獲獎代表.從這22名中隨機抽取3人, 則這3人中中國選手恰好1人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲,乙兩人玩摸球游戲,每兩局為一輪,每局游戲的規(guī)則如下:甲,乙兩人均從裝有4只紅球、1只黑球的袋中輪流不放回摸取1只球,摸到黑球的人獲勝,并結束該局.

(1)若在一局中甲先摸,求甲在該局獲勝的概率;

(2)若在一輪游戲中約定:第一局甲先摸,第二局乙先摸,每一局先摸并獲勝的人得1分,后摸井獲勝的人得2分,未獲勝的人得0分,求此輪游戲中甲得分X的概率分布及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當時,證明:;

(3)試比較 ,并證明你的結論。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)是給定實數(shù),解關于的不等式 ;

(2)是一個給定實數(shù),試求出1的取值范圍,使得不等式能滿足1中的式子。

查看答案和解析>>

同步練習冊答案