【題目】如圖,三棱柱,平面,,,為的中點。
(1)求證:平面;
(2)若,求二面角的余弦值;
(3)若點在線段上,且平面,確定點的位置并求線段的長。
【答案】(1)見解析;(2);(3)見解析
【解析】
(1)連接,交于點,點為的中點,為的中點,求得∥,利用線面平行的判定定理,即可得到∥平面.
(2)以為原點,分別以的方向為軸、軸、軸的正方向建立空間直角坐標系,求得平面H和平面的法向量,利用向量的夾角公式,即可求解.
(3)設(shè),根據(jù)平面,列出方程組,即可求解.
(1)連接,交于點,則點為的中點,
因為為的中點,所以∥.
又平面,平面,
所以∥平面.
(2)因為平面,∥,
所以平面,又
故以為原點,分別以的方向為軸、軸、軸的正方向
建立空間直角坐標系,
則,
所以
設(shè)平面的法向量為,
則有 即
令,則得.
又平面的法向量為,且二面角為銳角,
故二面角的余弦值為
(3)設(shè)因為,所以,
.
又 ,,平面,
所以 解得
所以,且點在線段的三等分點處,即
科目:高中數(shù)學 來源: 題型:
【題目】下列有關(guān)線性回歸分析的四個命題:
①線性回歸直線必過樣本數(shù)據(jù)的中心點();
②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;
③當相關(guān)性系數(shù)時,兩個變量正相關(guān);
④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)就越接近于.
其中真命題的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,即楊輝三角,這是數(shù)學史上的一個偉大成就.在“楊輝三角”中,若去除所有為1的項,依次構(gòu)成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列的前56項和為( )
A.2060B.2038C.4084D.4108
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的右焦點為拋物線的焦點,,是橢圓上的兩個動點,且線段長度的最大值為4.
(1)求橢圓的標準方程;
(2)若,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標系的極坐標方程為,直線l的參數(shù)方程為,(其中為參數(shù))直線l與交于A,B兩個不同的點.
求傾斜角的取值范圍;
求線段AB中點P的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)查.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按分成6組,其頻率分布直方圖如圖所示.
(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);
(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關(guān)系”
男 | 女 | 總計 | |
網(wǎng)購迷 | 20 | ||
非網(wǎng)購迷 | 45 | ||
總計 | 100 |
附:.
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)),是的導函數(shù).
(Ⅰ)當時,求證;
(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,短軸長為4.
(1)求橢圓的方程;
(2)過點作兩條直線,分別交橢圓于兩點(異于),當直線,的斜率之和為4時,直線恒過定點,求出定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com