【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的x1、x2 , 有|x1﹣x2|min= ,則φ=( )
A.
B.
C.
D.
【答案】D
【解析】解:因?yàn)閷⒑瘮?shù)f(x)=sin2x的周期為π,函數(shù)的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象.若對滿足|f(x1)﹣g(x2)|=2的可知,兩個(gè)函數(shù)的最大值與最小值的差為2,有|x1﹣x2|min= ,
不妨x1= ,x2= ,即g(x)在x2= ,取得最小值,sin(2× ﹣2φ)=﹣1,此時(shí)φ=- ,不合題意,
x1= ,x2= ,即g(x)在x2= ,取得最大值,sin(2× ﹣2φ)=1,此時(shí)φ= ,滿足題意.
故選:D.
利用三角函數(shù)的最值,求出自變量x1 , x2的值,然后判斷選項(xiàng)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正方體ABCD﹣A′B′C′D′.
(1)設(shè)M,N分別是A′D′,A′B′的中點(diǎn),試在下列三個(gè)正方體中各作出一個(gè)過正方體頂點(diǎn)且與平面AMN平行的平面(不用寫過程)
(2)設(shè)S是B′D′的中點(diǎn),F(xiàn),G分別是DC,SC的中點(diǎn),求證:直線GF∥平面BDD′B′.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費(fèi)用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計(jì)數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計(jì)公式分別為.]
(1)根據(jù)頻率分布直方圖計(jì)算圖中各小長方形的寬度;
(2)試估計(jì)該公司投入萬元廣告費(fèi)用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個(gè)數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照5%的比例進(jìn)行分層抽樣,統(tǒng)計(jì)結(jié)果按, , , , 分組,整理如下圖:
(Ⅰ)寫出頻率分布直方圖(圖乙)中的值;記所抽取樣本中甲種酸奶與乙種酸奶日銷售量的方差分別為, ,試比較與的大。ㄖ恍鑼懗鼋Y(jié)論);
(Ⅱ)從甲種酸奶日銷售量在區(qū)間的數(shù)據(jù)樣本中抽取3個(gè),記在內(nèi)的數(shù)據(jù)個(gè)數(shù)為,求的分布列;
(Ⅲ)估計(jì)1200個(gè)日銷售量數(shù)據(jù)中,數(shù)據(jù)在區(qū)間中的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 、分別為和的中點(diǎn).
()證明: 平面.
()證明:平面平面.
()當(dāng)上的動(dòng)點(diǎn)滿足什么條件時(shí),使三棱錐的體積與四棱錐體積的比值為,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中, ,點(diǎn)E,H分別是所在邊靠近B,D的三等分點(diǎn),現(xiàn)沿著EH將矩形折成直二面角,分別連接AD,AC,CB,形成如圖所示的多面體.
(1)證明:平面BCE∥平面ADH;
(2)證明:EH⊥AC;
(3)求二面角B-AC-D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),圓.
()設(shè),求過點(diǎn)且與圓相切的直線方程.
()設(shè),直線過點(diǎn)且被圓截得的弦長為,求直線的方程.
()設(shè),直線過點(diǎn),求被圓截得的線段的最短長度,并求此時(shí)的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com