【題目】已知橢圓的長軸長為6,離心率為.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè)橢圓C的左、右焦點(diǎn)分別為,,左、右頂點(diǎn)分別為AB,點(diǎn)MN為橢圓C上位于x軸上方的兩點(diǎn),且,記直線AM,BN的斜率分別為,且,求直線的方程.

【答案】12

【解析】

1)根據(jù)長軸長為6,離心率為,可求得的值,即可得答案;

2)設(shè)的方程為,,直線與橢圓的另一個交點(diǎn)為,利用得到方程,與韋達(dá)定理聯(lián)立,求得,進(jìn)一步求得關(guān)于的方程,求出的值,即可得到直線方程.

1)由題意,可得,

聯(lián)立解得,,

∴橢圓的標(biāo)準(zhǔn)方程為.

2)如圖,由(1)知

設(shè)的方程為,,

直線與橢圓的另一個交點(diǎn)為,

,根據(jù)對稱性可得

聯(lián)立,整理得

,

,∴

,

聯(lián)立解得,

,,∴

,∴,

∴直線的方程為,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x3a2+a+2x2+a2a+2xaR

1)當(dāng)a=1時(shí),求函數(shù)y=fx)的單調(diào)區(qū)間;

2)求函數(shù)y=fx)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,底面為矩形的四棱錐中,底面ABCD,MN分別為ADPC中點(diǎn).

(1)證明:平面PAB

(2)求異面直線MNAB所成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)xR,實(shí)數(shù)a[0,+∞),e=2.71828…是自然對數(shù)的底數(shù),).

(Ⅰ)若fx)≥0在xR上恒成立,求實(shí)數(shù)a的取值范圍;

(Ⅱ)若ex≥lnx+m對任意x0恒成立,求證:實(shí)數(shù)m的最大值大于2.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中,正確的是( )

A. 命題,則的逆命題是真命題

B. 命題存在的否定是:任意

C. 命題“pq”為真命題,則命題“p”和命題“q”均為真命題

D. 已知,則的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 .

(1)若上的增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個極值點(diǎn),判斷函數(shù)零點(diǎn)的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若關(guān)于的方程上恰有兩個不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;

(2)是否存在實(shí)數(shù)使得總成立?若存在,求實(shí)數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①空間中沒有交點(diǎn)的兩直線是平行直線或異面直線;②原命題和逆命題真假相反;③若,則;④正方形的兩條對角線相等且互相垂直,其中真命題的個數(shù)為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)對12歲兒童瞬時(shí)記憶能力進(jìn)行調(diào)查,瞬時(shí)記憶能力包括聽覺記憶能力與視覺記憶能力.某班學(xué)生共有40人,下表為該班學(xué)生瞬時(shí)記憶能力的調(diào)查結(jié)果.例如表中聽覺記憶能力為中等,且視覺記憶能力偏高的學(xué)生為3.由于部分?jǐn)?shù)據(jù)丟失,只知道從這40位學(xué)生中隨機(jī)抽取一個,視覺記憶能力恰為中等,且聽覺記憶能力為中等或中等以上的概率為.

視覺

視覺記憶能力

偏低

中等

偏高

超常

聽覺記憶

能力

偏低

0

7

5

1

中等

1

8

3

偏高

2

0

1

超常

0

2

1

1

1)試確定的值;

2)從40人中任意抽取3人,設(shè)具有聽覺記憶能力或視覺記憶能力偏高或超常的學(xué)生人數(shù)為,求隨機(jī)變量的分布列

查看答案和解析>>

同步練習(xí)冊答案