如圖,已知點M(x,y)是橢圓C:=1上的動點,以M為切點的切線l與直線y=2相交于點P.
(1)過點M且l與垂直的直線為l1,求l1與y軸交點縱坐標的取值范圍;
(2)在y軸上是否存在定點T,使得以PM為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,說明理由.
(參考定理:若點Q(x1,y1)在橢圓,則以Q為切點的橢圓的切線方程是:

【答案】分析:(1)先求切線的斜率,可得直線l1的方程,確定l1與y軸交點縱坐標,即可求得l1與y軸交點縱坐標的取值范圍;
(2)確定P的坐標,利用以PM為直徑的圓恒過點T,結合向量知識,即可求得結論.
解答:解:(1)由橢圓得:,y'=
切線的斜率為:k=,
所以,直線l1的方程為:,
所以l1與y軸交點縱坐標為:y=-=
因為-1≤x≤1,所以,,
所以,當切點在第一、二象限時,l1與y軸交點縱坐標的取值范圍為:,
則利用對稱性可知l1與y軸交點縱坐標的取值范圍為:
(2)依題意,可得∠PTM=90°,設存在T(0,t),M(x,y
由(1)得點P的坐標(,2),
可得(0-,t-2)•(-x,t-y)=0,
∴1-y+(t-2)(t-y)=0,
∴y(1-t)+(t-1)2=0
∴t=1
∴存在點T(0,1)滿足條件.
點評:本題考查直線與橢圓的位置關系,考查向量知識的運用,考查學生的運算能力,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知點A(-2,0),點P是⊙B:(x-2)2+y2=36上任意一點,線段AP的垂直平分線交BP于點Q,點Q的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個交點M、N,并且其中一條切線滿足∠MON>90°,求證:對于任意一條切線l總有∠MON>90°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•盧灣區(qū)二模)如圖,已知點H(-3,0),動點P在y軸上,點Q在x軸上,其橫坐標不小于零,點M在直線PQ上,且滿足
HP
PM
=0
PM
=-
3
2
MQ

(1)當點P在y軸上移動時,求點M的軌跡C;
(2)過定點F(1,0)作互相垂直的直線l與l',l與(1)中的軌跡C交于A、B兩點,l'與(1)中的軌跡C交于D、E兩點,求四邊形ADBE面積S的最小值;
(3)(在下列兩題中,任選一題,寫出計算過程,并求出結果,若同時選做兩題,
則只批閱第②小題,第①題的解答,不管正確與否,一律視為無效,不予批閱):
①將(1)中的曲線C推廣為橢圓:
x2
2
+y2=1
,并
將(2)中的定點取為焦點F(1,0),求與(2)相類似的問題的解;
②(解答本題,最多得9分)將(1)中的曲線C推廣為橢圓:
x2
a2
+
y2
b2
=1
,并
將(2)中的定點取為原點,求與(2)相類似的問題的解.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年廣東省高考數(shù)學押題預測試卷(理科)(解析版) 題型:解答題

如圖,已知點M(x,y)是橢圓C:=1上的動點,以M為切點的切線l與直線y=2相交于點P.
(1)過點M且l與垂直的直線為l1,求l1與y軸交點縱坐標的取值范圍;
(2)在y軸上是否存在定點T,使得以PM為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,說明理由.
(參考定理:若點Q(x1,y1)在橢圓,則以Q為切點的橢圓的切線方程是:

查看答案和解析>>

科目:高中數(shù)學 來源:2013年廣東省湛江市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

如圖,已知點M(x,y)是橢圓C:=1上的動點,以M為切點的切線l與直線y=2相交于點P.
(1)過點M且l與垂直的直線為l1,求l1與y軸交點縱坐標的取值范圍;
(2)在y軸上是否存在定點T,使得以PM為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,說明理由.
(參考定理:若點Q(x1,y1)在橢圓,則以Q為切點的橢圓的切線方程是:

查看答案和解析>>

同步練習冊答案