設(shè)x,y滿足約束條件
4x-y+4≥0
8x+y-16≤0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(8b>a>0)的最大值為5,則
1
a
+
2
b
的最小值為( 。
A、5B、6C、7D、8
分析:先根據(jù)條件畫出可行域,設(shè)z=ax+by,再利用幾何意義求最值,將最大值轉(zhuǎn)化為y軸上的截距,只需求出直線z=ax+by,過可行域內(nèi)的點(diǎn)(4,6)時取得最大值,從而得到一個關(guān)于a,b的等式,最后利用基本不等式求最小值即可.
解答:精英家教網(wǎng)解:不等式表示的平面區(qū)域如圖所示陰影部分,
當(dāng)直線ax+by=z(a>0,b>0)過直線4x-y+4=0與直線8x+y-16=0的交點(diǎn)(1,8)時,
目標(biāo)函數(shù)z=ax+by(a>0,b>0)取得最大5,
即a+8b=5,
而  (
1
a
+
2
b
)
a+8b
5
=
1
5
[17+
8b
a
+
2a
b
)]≥5
≥5.
1
a
+
2
b
的最小值為5,
故選A.
點(diǎn)評:本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.本題要求能準(zhǔn)確地畫出不等式表示的平面區(qū)域,并且能夠求得目標(biāo)函數(shù)的最值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊答案