18.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)y=6cosx的圖象與y=5tanx的圖象的交點(diǎn)為P,過點(diǎn)P作PP1⊥x軸于點(diǎn)P1,直線PP1與y=sinx的圖象交于點(diǎn)P2,則線段P1P2的長(zhǎng)為( 。
A.$\frac{3}{2}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

分析 由題意,函數(shù)y=6cosx的圖象與y=5tanx的圖象的交點(diǎn)為P,設(shè)P的坐標(biāo)(x1,y1),則有5tanx1=6cosx1,求出x1,y1,過點(diǎn)P作PP1⊥x軸于點(diǎn)P1,則x=x1,可得y2=sinx1,線段P1P2的長(zhǎng)為y2可得答案.

解答 解:由題意,函數(shù)y=6cosx的圖象與y=5tanx的圖象的交點(diǎn)為P,設(shè)P的坐標(biāo)(x1,y1),
則有5tanx1=6cosx1
可得:5sinx1=6cos2x1,
得6sin2x1+5sinx1-6=0,即(3sinx1-2)(2sinx1+3)=0,
解得:sinx1=$\frac{2}{3}$,sinx1=$-\frac{3}{2}$(舍去)
可得y2=sinx1=$\frac{2}{3}$
∴線段P1P2的長(zhǎng)為y2=$\frac{2}{3}$.
故選B

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象,以及同角三角函數(shù)關(guān)系式的計(jì)算.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.按如圖所示的程序框圖,若輸入a=81,則輸出的i=(  )
A.14B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2,直線y=x被橢圓C截得的弦長(zhǎng)為$\frac{4\sqrt{3}}{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)M(x0,y0)是橢圓C上的動(dòng)點(diǎn),過原點(diǎn)O引兩條射線l1,l2與圓M:(x-x02+(y-y02=$\frac{2}{3}$分別相切,且l1,l2的斜率k1,k2存在.
①試問k1•k2是否定值?若是,求出該定值,若不是,說明理由;
②若射線l1,l2與橢圓C分別交于點(diǎn)A,B,求|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c為正實(shí)數(shù),且a+b+c=3,證明:$\frac{{c}^{2}}{a}$+$\frac{{a}^{2}}$+$\frac{^{2}}{c}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD丄底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD,BC=$\frac{1}{2}$AD
(I)求證:平面PQB⊥平面PAD
(Ⅱ)若三棱錐A-BMQ的體積是四棱錐P-ABCD體積的$\frac{1}{6}$,設(shè)PM=tMC,試確定t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知m,l是直線,α,β是平面,給出下列命題:
①若l垂直于α,則l垂直于α內(nèi)的所有直線,
②若l平行于α,則l平行于α內(nèi)的所有直線
③若l?β,且l⊥α,則α⊥β
④若m?α,l?β,且α∥β,則m∥l
其中正確的命題的個(gè)數(shù)是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)f(x)=ex-e-x-x.
(1)求f(x)的單調(diào)區(qū)間;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1-a)x]+(1-a)x3.若對(duì)所有x≥0,都有g(shù)(x)≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow{a}$=(sin(π+ωx),2cosωx),$\overrightarrow$=(2$\sqrt{3}$sin($\frac{π}{2}$+ωx),cosωx),(ω>0),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,其圖象上相鄰的兩個(gè)最低點(diǎn)之間的距離為π.
(Ⅰ)求函數(shù)f(x)的對(duì)稱中心;
(Ⅱ)在銳角△ABC中,角A、B、C的對(duì)邊分別為a、b、c,tanB=$\frac{\sqrt{3}ac}{{a}^{2}+{c}^{2}-^{2}}$,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,四面體ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4$\sqrt{3}$,∠ABC=30°.
(I)求證:AC⊥BD;
(II)若二面角B-AC-D為45°,求直線AB與平面ACD所成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案