【題目】集合{﹣1,0,1}共有個子集.

【答案】8
【解析】解:因為集合{﹣1,0,1}, 所以集合{﹣1,0,1}的子集有:{﹣1},{0},{1},{﹣1,0},{﹣1,1},{0,1},{﹣1,0,1},,共8個.
所以答案是:8.
【考點精析】利用子集與真子集對題目進行判斷即可得到答案,需要熟知任何一個集合是它本身的子集;n個元素的子集有2n個,n個元素的真子集有2n -1個,n個元素的非空真子集有2n-2個.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題p1:函數(shù)y=2x﹣2x在R上為增函數(shù),p2:函數(shù)y=2x+2x在R上為減函數(shù),則在命題q1:p1∨p2 , q2:p1∧p2;q3:(¬p1)∨p2;q4:p1∨(¬p2);其中為真命題的是(
A.q1和q3
B.q2和q3
C.q1 和q4
D.q2和q4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={1,2,3},集合B ={x|x2=x},則AB=

A. {1}B. {1,2}C. {0,1,2,3}D. {1,0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x3的圖象為曲線C,給出以下四個命題: ①若點M在曲線C上,過點M作曲線C的切線可作一條且只能作一條;
②對于曲線C上任意一點P(x1 , y1)(x1≠0),在曲線C上總可以找到一點Q(x2 , y2),使x1和x2的等差中項是同一個常數(shù);
③設函數(shù)g(x)=|f(x)﹣2sin2x|,則g(x)的最小值是0;
④若f(x+a)≤8f(x)在區(qū)間[1,2]上恒成立,則a的最大值是1.
其中真命題的個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年高校招生實施強基計劃,其主要選拔培養(yǎng)有志于服務國家重大戰(zhàn)略需求且綜合素質優(yōu)秀或基礎學科拔尖的學生,聚焦高端芯片與軟件、智能科技、新材料、先進制造和國家安全等關鍵領域以及國家人才緊缺的人文社會科學領域,有36所大學首批試點強基計劃某中學積極應對,高考前進行了一次模擬筆試,甲、乙、丙、丁四人參加,按比例設定入圍線,成績公布前四人分別做猜測如下:

甲猜測:我不會入圍,丙一定入圍;乙猜測:入圍者必在甲、丙、丁三人中

丙猜測:乙和丁中有一人入圍;丁猜測:甲的猜測是對的

成績公布后,四人中恰有兩人預測正確,且恰有兩人入圍,則入圍的同學是(

A.甲和丙B.乙和丁C.甲和丁D.乙和丙

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】命題x0,則2x1的否命題是(

A.x0,則2x≤1B.x≤0,則2x1

C.x≤0,則2x≤1D.2x1,則x0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x﹣1)=x2 , 則f(x)的表達式為(
A.f(x)=x2+2x+1
B.f(x)=x2﹣2x+1
C.f(x)=x2+2x﹣1
D.f(x)=x2﹣2x﹣1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】曲線y=2x2﹣x在點(1,1)處的切線方程為(
A.x﹣y+2=0
B.3x﹣y+2=0
C.x﹣3y﹣2=0
D.3x﹣y﹣2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有五張相同的卡片,卡片上分別寫有數(shù)字12345,甲、乙兩人分別從中各自隨機抽取一張.然后根據(jù)自己手中卡片上的數(shù)字推測誰手中卡片上的數(shù)字更大.甲看了看自己手中卡片上的數(shù)字,想了想說:我不知道誰手中卡片上的數(shù)字更大;乙聽了甲的判斷后,看了看自己手中卡片上的數(shù)字,思索了一下說:我也不知道誰手中卡片上的數(shù)字更大.如果甲、乙所作出的推理都是正確的.那么乙手中卡片上的數(shù)字是________

查看答案和解析>>

同步練習冊答案