15.在△ABC中,∠C=$\frac{π}{2}$,求證:∠B<$\frac{π}{2}$.

分析 利用反證法證明步驟,即可證明.

解答 證明:假設(shè)$∠B≥\frac{π}{2}$,所以∠B+∠C≥π,
與三角形內(nèi)角的內(nèi)角和為π矛盾,
所以假設(shè)不成立,
因此$∠B<\frac{π}{2}$.

點(diǎn)評(píng) 本題主要考查用反證法證明數(shù)學(xué)命題,把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,是解題的突破口,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a,b,c是互不相等的實(shí)數(shù),求經(jīng)過下列每兩個(gè)點(diǎn)的直線的傾斜角
(1)A(a,c),B(b,c);
(2)A(a,b),B(a,c);
(3)A(b,b+c),B(a,a+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.襄陽市某優(yōu)質(zhì)高中為了選拔學(xué)生參加“全國中學(xué)生英語能力競賽(NEPCS)”,先在本校進(jìn)行初賽(滿分150分),若該校有100名學(xué)生參加初賽,并根據(jù)初賽成績得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,計(jì)算這100名學(xué)生參加初賽成績的中位數(shù);
(2)該校推薦初賽成績?cè)?10分以上的學(xué)生代表學(xué)校參加競賽,為了了解情況,在該校推薦參加競賽的學(xué)生中隨機(jī)抽取2人,求選取的兩人的初賽成績?cè)陬l率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{2}=1(a>0)$,點(diǎn)A,F(xiàn)分別為其右頂點(diǎn)和右焦點(diǎn),過F作AF的垂線交橢圓C于P,Q兩點(diǎn),過P作AP的垂線交x軸于點(diǎn)D,若|DF|=$\frac{a+\sqrt{{a}^{2}-2}}{2}$,則橢圓C的長軸長為( 。
A.2B.4C.2$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)點(diǎn)P(-2,0),Q(2,0),直線PM,QM相交于點(diǎn)M,且它們的斜率之積為-$\frac{1}{4}$.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)直線l的斜率為1,直線l與橢圓C交于A,B兩點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知圓O:x2+y2=r2(r>0),點(diǎn)P為圓O上任意一點(diǎn)(不在坐標(biāo)軸上),過點(diǎn)P作傾斜角互補(bǔ)的兩條直線分別交圓O于另一點(diǎn)A,B.
(1)當(dāng)直線PA的斜率為2時(shí),
①若點(diǎn)A的坐標(biāo)為(-$\frac{1}{5}$,-$\frac{7}{5}$),求點(diǎn)P的坐標(biāo);
②若點(diǎn)P的橫坐標(biāo)為2,且PA=2PB,求r的值;
(2)當(dāng)點(diǎn)P在圓O上移動(dòng)時(shí),求證:直線OP與AB的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.專家由圓x2+y2=a2的面積S=πa2通過類比推理猜想橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab,之后利用演繹推理證明了這個(gè)公式是對(duì)的!在平面直角坐標(biāo)系中,點(diǎn)集A={(x,y)|$\frac{{x}^{2}}{4}$+y2≤1},點(diǎn)集B={(x,y)|-3<x<3,-1<y<5},則點(diǎn)集M={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的區(qū)域的面積為36+2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求證:當(dāng)一個(gè)圓和一個(gè)正方形的周長相等時(shí),圓的面積比正方形的面積大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在等差數(shù)列{an}中,a1=-2016,其前n項(xiàng)和為Sn,若$\frac{{{S_{20}}}}{20}-\frac{{{S_{18}}}}{18}$=2,則S2016的值等于-2016.

查看答案和解析>>

同步練習(xí)冊(cè)答案