【題目】某水產(chǎn)養(yǎng)殖戶制作一體積為立方米的養(yǎng)殖網(wǎng)箱(無(wú)蓋),網(wǎng)箱內(nèi)部被隔成體積相等的三塊長(zhǎng)方體區(qū)域(如圖),網(wǎng)箱.上底面的一邊長(zhǎng)為米,網(wǎng)箱的四周與隔欄的制作價(jià)格是元/平方米,網(wǎng)箱底部的制作價(jià)格為元/平方米.設(shè)網(wǎng)箱上底面的另一邊長(zhǎng)為米,網(wǎng)箱的制作總費(fèi)用為元.

(1)求出之間的函數(shù)關(guān)系,并指出定義域;

(2)當(dāng)網(wǎng)箱上底面的另一邊長(zhǎng)為多少米時(shí),制作網(wǎng)箱的總費(fèi)用最少.

【答案】(1) ,定義域?yàn)?/span>;(2)

【解析】分析:(1) 隔欄與四周總面積為平方米,底部面積為平方米,結(jié)合不同位置的價(jià)格即可的結(jié)果;(2),由可得,從而可得結(jié)果.

詳解 (1)網(wǎng)箱的高為米,

由三塊區(qū)域面積相同可得隔欄與左右兩邊交點(diǎn)為三等分點(diǎn),

隔欄與四周總面積為平方米,

底部面積為平方米,

定義域?yàn)?/span>;

(2) ,

可得,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,

答: 定義域?yàn)?/span>;網(wǎng)箱上底面的另一邊長(zhǎng)為多少米時(shí),制作網(wǎng)箱的總費(fèi)用最少.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)等差數(shù)列{an}中,a1+3a8a15=120,求2a9a10的值;

(2)在等差數(shù)列{an}中,a15=8,a60=20,求a75的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且(c﹣2a) =c
(1)求B的大。
(2)已知f(x)=cosx(asinx﹣2cosx)+1,若對(duì)任意的x∈R,都有f(x)≤f(B),求函數(shù)f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若圓(x-1)2+(y+1)2R2上有且僅有兩個(gè)點(diǎn)到直線4x+3y=11的距離等于1,則半徑R的取值范圍是(  )

A. R>1 B. R<3 C. 1<R<3 D. R≠2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從點(diǎn)P(4,5)向圓(x-2)2y2=4引切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=aln(x2+1)+bx存在兩個(gè)極值點(diǎn)x1 , x2
(1)求證:|x1+x2|>2;
(2)若實(shí)數(shù)λ滿足等式f(x1)+f(x2)+a+λb=0,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知?jiǎng)又本過(guò)點(diǎn),且與圓交于、兩點(diǎn).

(1)若直線的斜率為,求的面積;

(2)若直線的斜率為,點(diǎn)是圓上任意一點(diǎn),求的取值范圍;

(3)是否存在一個(gè)定點(diǎn)(不同于點(diǎn)),對(duì)于任意不與軸重合的直線,都有平分,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合,.記為同時(shí)滿足下列條件的集合的個(gè)數(shù):

;②若,則;③若,則

則(___________

的解析式(用表示)___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若函數(shù)和函數(shù)在區(qū)間上均為增函數(shù),求實(shí)數(shù)的取值范圍;

2)若方程有唯一解,求實(shí)數(shù)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案