【題目】已知函數(shù)()在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(Ⅰ)求實(shí)數(shù)的取值范圍;
(Ⅱ)記兩個(gè)極值點(diǎn)分別為, (),求證: .
【答案】(Ⅰ)(Ⅱ)見(jiàn)解析
【解析】試題分析:(Ⅰ)求導(dǎo),將函數(shù)由兩個(gè)不等極值轉(zhuǎn)化為導(dǎo)函數(shù)有兩個(gè)不等零點(diǎn),再進(jìn)一步轉(zhuǎn)化為兩函數(shù)圖象的交點(diǎn)問(wèn)題;(Ⅱ)合理構(gòu)造函數(shù),將證明不等式轉(zhuǎn)化為求函數(shù)的最值問(wèn)題,再利用導(dǎo)數(shù)進(jìn)行求解.
試題解析:(Ⅰ)依題,函數(shù)的定義域?yàn)?/span>,所以方程在有兩個(gè)不同根,即方程在有兩個(gè)不同根.即函數(shù)與函數(shù)的圖象在上有兩個(gè)不同交點(diǎn),可見(jiàn),若令過(guò)原點(diǎn)且切于函數(shù)圖象的直線(xiàn)斜率為,只須.令切點(diǎn),所以,又,所以,
解得, ,于是,所以.
(Ⅱ)由(Ⅰ)可知, 分別是方程的兩個(gè)根,即.
作差得, ,即.
所以不等式,等價(jià)于,
下面先證,即證,
令,∵,∴,即證(),
令(),則,
∴在上單調(diào)遞增,∴,
即得證,從而得證;
再證,即證,即證(),
令(),則,
∴在上單調(diào)遞減,∴,
即得證,從而得證,
綜上所述, 成立,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】湖南省某自來(lái)水公司每個(gè)月(記為一個(gè)收費(fèi)周期)對(duì)用戶(hù)收一次水費(fèi),收費(fèi)標(biāo)準(zhǔn)如下:當(dāng)每戶(hù)用水量不超過(guò)30噸時(shí),按每噸2元收;當(dāng)該用戶(hù)用水量超過(guò)30噸但不超過(guò)50噸時(shí),超出部分按每噸3元收;當(dāng)該用戶(hù)用水量超過(guò)50噸時(shí),超出部分按每噸4元收取。
(1)記某用戶(hù)在一個(gè)收費(fèi)周期的用水量為噸,所繳水費(fèi)為元,寫(xiě)出關(guān)于的函數(shù)解析式;
(2)在某一個(gè)收費(fèi)周期內(nèi),若甲、乙兩用戶(hù)所繳水費(fèi)的和為214元,且甲、乙兩用戶(hù)用水量之比為3:2,試求出甲、乙兩用戶(hù)在該收費(fèi)周期內(nèi)各自的用水量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)關(guān)于軸對(duì)稱(chēng),頂點(diǎn)在坐標(biāo)原點(diǎn),直線(xiàn)經(jīng)過(guò)拋物線(xiàn)的焦點(diǎn).
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)與拋物線(xiàn)相交于不同的兩點(diǎn), ,且滿(mǎn)足,證明直線(xiàn)過(guò)軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一網(wǎng)站營(yíng)銷(xiāo)部為統(tǒng)計(jì)某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購(gòu)金額情況,如下表:
若將當(dāng)日網(wǎng)購(gòu)金額不小于2千元的網(wǎng)友稱(chēng)為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額小于2千元的網(wǎng)友稱(chēng)為“網(wǎng)購(gòu)探者”.已知“網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)探者”人數(shù)的比例為2:3.
(1)確定的值,并補(bǔ)全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購(gòu)金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個(gè)不低于2千元,則該網(wǎng)店當(dāng)日被評(píng)為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評(píng)為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)且是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, 底面,底面為正方形, , 分別是的中點(diǎn).
(Ⅰ)求證: ;
(Ⅱ)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(a+2cos2x)cos(2x+θ)為奇函數(shù),且f( )=0,其中a∈R,θ∈(0,π).
(1)求a,θ的值;
(2)若f( )=﹣ ,α∈( ,π),求sin(α+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn): 的焦點(diǎn)為圓的圓心.
(1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;
(2)若斜率的直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn)與拋物線(xiàn)相交于兩點(diǎn),求弦長(zhǎng).
【答案】(1);(2)8.
【解析】試題分析:(1)先求圓心得焦點(diǎn),根據(jù)焦點(diǎn)得拋物線(xiàn)方程(2)先根據(jù)點(diǎn)斜式得直線(xiàn)方程,與拋物線(xiàn)聯(lián)立方程組,利用韋達(dá)定理以及弦長(zhǎng)公式得弦長(zhǎng).
試題解析:(1)圓的標(biāo)準(zhǔn)方程為,圓心坐標(biāo)為,
即焦點(diǎn)坐標(biāo)為,得到拋物線(xiàn)的方程:
(2)直線(xiàn): ,聯(lián)立,得到
弦長(zhǎng)
【題型】解答題
【結(jié)束】
19
【題目】已知函數(shù)在點(diǎn)處的切線(xiàn)方程為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間和極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4﹣1:幾何證明選講
如圖,AB為⊙O直徑,直線(xiàn)CD與⊙O相切與E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,連接AE,BE.證明:
(1)∠FEB=∠CEB;
(2)EF2=ADBC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com