已知棱長為1的正方體ABCD-A1B1C1D1中,E、F、M分別是A1C1、A1D和B1A上任一點,求證:平面A1EF∥平面B1MC
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,四邊形為直角梯形,,,為等邊三角形,且平面平面,,為中點.
(1)求證:;
(2)求平面與平面所成的銳二面角的余弦值;
(3)在內(nèi)是否存在一點,使平面,如果存在,求的長;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(I)求證:A1C⊥平面BCDE;
(II)若M是A1D的中點,求CM與平面A1BE所成角的大;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖, 是邊長為的正方形,平面,,,與平面所成角為
(I)設點是線段上一個動點,試確定點的位置, 使得平面,并證明你的結(jié)論 ;
(Ⅱ)求二面角的余弦值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知是邊長為2的等邊三角形,平面,,是上一動點.
(1)若是的中點,求直線與平面所成的角的正弦值;
(2)在運動過程中,是否有可能使平面?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中點.
(1)求cos(,)的值;
(2)求證:A1B⊥C1M.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分l2分)(注意:在試題卷上作答無效)
如圖,四棱錐中, ∥,,側(cè)面為等邊三角形..
(I) 證明:
(II) 求AB與平面SBC所成角的大小。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com