已知拋物線S的頂點在坐標(biāo)原點,焦點在x軸上,△ABC的三個頂點都在拋物線上,且△ABC的重心為拋物線的焦點,若BC所在直線l的方程為4x+y-20=0.
(I)求拋物線S的方程;
(II)若O是坐標(biāo)原點,P、Q是拋物線S上的兩動點,且滿足PO⊥OQ.試說明動直線PQ是否過一個定點.
(I)設(shè)拋物線S的方程為y2=2px.(1分)
4x+y-20=0
y2=2px
可得2y2+py-20p=0.(3分)
由△>0,有p>0,或p<-160.
設(shè)B(x1,y1),C(x2,y2),則y1+y2=-
p
2
,
x1+x2=(5-
y1
4
)+(5-
y2
4
)=10-
y1+y2
4
=10+
p
8
.
(5分)
設(shè)A(x3,y3),由△ABC的重心為F(
p
2
,0)
,則
x1+x2+x3
3
=
p
2
,
y1+y2+y3
3
=0
,
x3=
11p
8
-10,y3=
p
2
.
(6分)
∵點A在拋物線S上,
(
p
2
)2=2p(
11p
8
-10)
,
∴p=8.(7分)
∴拋物線S的方程為y2=16x.(8分)
(II)當(dāng)動直線PQ的斜率存在時,
設(shè)動直線PQ方程為y=kx+b,顯然k≠0,b≠0.(9分)
∵PO⊥OQ,
∴kOP•kOQ=-1.
設(shè)P(xP,yP)Q(xQ,yQ
yP
xP
yQ
xQ
=-1
,
∴xPxQ+yPyQ=0.(10分)
將y=kx+b代入拋物線方程,得ky2-16y+16b=0,
yPyQ=
16b
k
.

從而xPxQ=
yP2yQ2
162
=
b2
k2
,
b2
k2
+
16b
k
=0.

∵k≠0,b≠0,
∴b=-16k,
∴動直線方程為y=kx-16k=k(x-16),
此時動直線PQ過定點(16,0).(12分)
當(dāng)PQ的斜率不存在時,顯然PQ⊥x軸,又PO⊥OQ,
∴△POQ為等腰直角三角形.
y2=16x
y=x
y2=16x
y=-x
得到P(16,16),Q(16,-16),
此時直線PQ亦過點(16,0).(13分)
綜上所述,動直線PQ過定點:M(16,0).(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線S的頂點在坐標(biāo)原點,焦點在x軸上,△ABC的三個頂點都在拋物線上,且△ABC的重心為拋物線的焦點,若BC所在直線l的方程為4x+y-20=0.
(I)求拋物線S的方程;
(II)若O是坐標(biāo)原點,P、Q是拋物線S上的兩動點,且滿足PO⊥OQ.試說明動直線PQ是否過一個定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線S的頂點在坐標(biāo)原點,焦點在x軸上,的三個頂點都在拋物線上,且的重心為拋物線的焦點,若BC所在直線的方程為

   (I)求拋物線S的方程;

   (II)若O是坐標(biāo)原點,P,Q是拋物線S上的兩動點,且滿足.試說明動直線PQ是否過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線S的頂點在坐標(biāo)原點,焦點在x軸上,△ABC的三個頂點都在拋物線上,且△ABC的重心為拋物線的焦點,若BC所在直線l的方程為4x+y-20=0.

(1)求拋物線S的方程;

(2)若O是坐標(biāo)原點,P、Q是拋物線S上的兩個動點,且滿足OP⊥OQ.試說明動直線PQ是否過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年湖北省武漢市華中師大一附中高三五月調(diào)考數(shù)學(xué)試卷(文理合卷)(解析版) 題型:解答題

已知拋物線S的頂點在坐標(biāo)原點,焦點在x軸上,△ABC的三個頂點都在拋物線上,且△ABC的重心為拋物線的焦點,若BC所在直線l的方程為4x+y-20=0.
(I)求拋物線S的方程;
(II)若O是坐標(biāo)原點,P、Q是拋物線S上的兩動點,且滿足PO⊥OQ.試說明動直線PQ是否過一個定點.

查看答案和解析>>

同步練習(xí)冊答案