【題目】已知函數(shù)在與時(shí)都取得極值.(1)求的值;(2)若對(duì), 恒成立,求的取值范圍
【答案】(1) (2)
【解析】試題分析:(1)求出導(dǎo)函數(shù),通過(guò)和為的兩根,得到方程組求解即可;(2)化簡(jiǎn)函數(shù),求出導(dǎo)函數(shù),通過(guò)當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí), ,當(dāng)時(shí), ,判斷函數(shù)的單調(diào)性,求出函數(shù)的極值,然后求解的取值范圍.
試題解析:(1)∵,由已知條件可知: 和1為的兩根,
由韋達(dá)定理得: ,∴,
(2)由(1)得: ,由題知:當(dāng) (-2, )時(shí),
∴函數(shù)在區(qū)間(-2, )上是增函數(shù);
當(dāng) (,1)時(shí), ,∴函數(shù)在(,1)上是減函數(shù);
當(dāng) (1,2)時(shí), ,∴函數(shù)在(1,2)上是增函數(shù),
∴當(dāng)時(shí), ;當(dāng)時(shí),
∵,∴ [-2,2]時(shí), ,
由在 [-2,2]時(shí), 恒成立得:
由此解得:
∴的取值范圍為:(, ]∪[2, )
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐中,底面為直角梯形, 平面,側(cè)面是等腰直角三角形, , ,點(diǎn)是棱的中點(diǎn).
(1)證明:平面平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列的前項(xiàng)和為,.
()證明數(shù)列是等比數(shù)列,求出數(shù)列的通項(xiàng)公式.
()設(shè),求數(shù)列的前項(xiàng)和.
()數(shù)列中是否存在三項(xiàng),它們可以構(gòu)成等比數(shù)列?若存在,求出一組符合條件的項(xiàng);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)(題文)“你低碳了嗎?”這是某市為倡導(dǎo)建設(shè)節(jié)約型社會(huì)而發(fā)布的公益廣告里的一句話,活動(dòng)組織者為了了解這則廣告的宣傳效果,隨機(jī)抽取了120名年齡在,,…,的市民進(jìn)行問(wèn)卷調(diào)查,由此得到的樣本的頻率分布直方圖如圖所示.
(1)根據(jù)直方圖填寫(xiě)頻率分布統(tǒng)計(jì)表;
(2)根據(jù)直方圖,試估計(jì)受訪市民年齡的中位數(shù)(保留整數(shù));
(3)如果按分層抽樣的方法,在受訪市民樣本年齡在中共抽取5名市民,再?gòu)倪@5人中隨機(jī)選2人作為本次活動(dòng)的獲獎(jiǎng)?wù),求年齡在和的受訪市民恰好各有一人獲獎(jiǎng)的概率.
分組 | 頻數(shù) | 頻率 |
18 | 0.15 | |
30 | ||
0.2 | ||
6 | 0.05 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的上下兩個(gè)焦點(diǎn)分別為,過(guò)點(diǎn)與軸垂直的直線交橢圓于兩點(diǎn), 的面積為,橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知為坐標(biāo)原點(diǎn),直線與軸交于點(diǎn),與橢圓交于兩個(gè)不同的點(diǎn),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,等腰的底邊,高,點(diǎn)是線段上異于點(diǎn)的動(dòng)點(diǎn),點(diǎn)在邊上,且,現(xiàn)沿將△折起到△的位置,使,記, 表示四棱錐的體積.
(1)求的表達(dá)式;(2)當(dāng)為何值時(shí), 取得最大,并求最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,其圖象上存在一點(diǎn),使此處切線的斜率,求實(shí)數(shù)的取值范圍;
(3)當(dāng), 時(shí),方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形的中心為點(diǎn), 邊所在的直線方程為.
(1)求邊所在的直線方程和正方形外接圓的方程;
(2)若動(dòng)圓過(guò)點(diǎn),且與正方形外接圓外切,求動(dòng)圓圓心的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l過(guò)點(diǎn)(1,0)且被兩條平行直線l1:3x+y-6=0和l2:3x+y+3=0所截得的線段長(zhǎng)為,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com