過(guò)拋物線(xiàn)y2=4x的焦點(diǎn)F的直線(xiàn)l交于拋物線(xiàn)于A(yíng),B兩點(diǎn),若AB中點(diǎn)M到拋物線(xiàn)的準(zhǔn)線(xiàn)距離為6,則線(xiàn)段AB的長(zhǎng)為
 
考點(diǎn):拋物線(xiàn)的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:根據(jù)拋物線(xiàn)的方程求出準(zhǔn)線(xiàn)方程,利用拋物線(xiàn)的定義拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線(xiàn)的距離,列出方程求出A,B的中點(diǎn)橫坐標(biāo),求出線(xiàn)段AB的中點(diǎn)到y(tǒng)軸的距離.
解答: 解:拋物線(xiàn)y2=4x的焦點(diǎn)坐標(biāo)(1,0),p=2.
設(shè)A(x1,y1) B(x2,y2
拋物y2=4x的線(xiàn)準(zhǔn)線(xiàn)x=-1,線(xiàn)段AB中點(diǎn)到拋物線(xiàn)的準(zhǔn)線(xiàn)方程的距離為6,
1
2
(x1+x2)=5,
∴x1+x2=10
∴|AB|=|AF|+|BF|=x1+x2+p=10+2=12,
故答案為:12.
點(diǎn)評(píng):本題的考點(diǎn)是函數(shù)的最值及其幾何意義,主要解決拋物線(xiàn)上的點(diǎn)到焦點(diǎn)的距離問(wèn)題,利用拋物線(xiàn)的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線(xiàn)的距離.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知命題p:“a>b”是“2a>2b”的充要條件;q:?x∈R,|x+l|≤x,則( 。
A、¬p∨q為真命題
B、p∧¬q為假命題
C、p∧q為真命題
D、p∨q為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a為實(shí)數(shù),則|a|≥1是|x|+|x-1|≤a有解的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,O是AC的中點(diǎn),E是線(xiàn)段D1O上一點(diǎn),且|D1E|=λ|EO|.
(1)求證:DB1⊥平面CD1O;
(2)若平面CDE⊥平面CD1O,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD為梯形,PD⊥平面ABCD,AB∥CD,∠BAD=∠ADC=90°,DC=2AB=2a,DA=
3
a,PD=
3
a,E為BC中點(diǎn)
(Ⅰ)求證:平面PBC⊥平面PDE;
(Ⅱ)線(xiàn)段PC上是否存在一點(diǎn)F,使PA∥平面BDF?若有,請(qǐng)找出具體位置,并進(jìn)行證明;若無(wú),請(qǐng)分析說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四面體ABCD中,棱長(zhǎng)為a,M、N分別為BC、AD的中點(diǎn).求:
(1)直線(xiàn)AM和CN所成角;
(2)直線(xiàn)AM和平面BCD所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC中tanA=3,
AP
=
1
3
AB
+
2
3
AC
AD
=λ(
AB
|
AB
|•cosB
+
AC
|
AC
|•cosC
)且
AP
AD
,則tanB=( 。
A、
1
2
B、
2
3
C、1
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn),直線(xiàn)l過(guò)焦點(diǎn)F2且與橢圓交于A(yíng),B兩點(diǎn),若△ABF1構(gòu)成以A為直角頂點(diǎn)的等腰直角三角形,設(shè)橢圓離心率為e,則e2=(  )
A、2-
3
B、3-
2
C、11-6
3
D、9-6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sinxcosx-cos2x+
1
2

(1)求f(x)的單調(diào)遞增區(qū)間
(2)求f(x)在區(qū)間][0,
π
2
]上的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案