平面內(nèi)給定三個向量a=(3,2),b=(-1,2),c=(4,1).

(1)求滿足a=mb+nc的實數(shù)m、n;

(2)若(a+kc)∥(2b-a),求實數(shù)k;

(3)設(shè)d=(x,y)滿足(d-c)∥(a+b),且|d-c|=1,求向量d.

答案:略
解析:

解:∵a=mbnc,

(32)=(m4n,2mn)

(2)(akc)(2ba),

akc=3(34k,2k),

2ba=(5,2)

2(34k)5(2k)=0,即

(3)dc=(x4y1),ab=(2,4),

(dc)(ab),|dc|=1

解得

主要考查向量的坐標(biāo)運算、共線條件以及運算能力.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)給定三個向量
a
=(3,2)
,
b
=(-1,2)
,
c
=(4,1)
,回答下列三個問題:
(1)試寫出將
a
b
,
c
表示的表達(dá)式;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求實數(shù)k的值;
(3)若向量
d
滿足(
d
+
b
)∥(
a
-
c
)
,且|
d
-
a
|=
26
,求
d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)給定三個向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)
(
a
+k
c
)
(2
a
-
b
)
,則實數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)給定三個向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)
(1)求|3
a
-
c
|
(2)若(
a
+k
c
)∥(2
b
-
a
)
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)給定三個向量
a
=(0,2),
b
=(-1,2),
c
=(3,3)

(1)求|2
a
+
b
-
c
|;
(2)若(
a
+k
c
)∥(2
a
-
b
)
,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)給定三個向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)

(1)求|3
a
+
b
-2
c
|
的值;
(2)若(
a
+k
c
)⊥(2
b
-
a
)
,求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案