A. | 1,$\frac{π}{6}$ | B. | 1,$-\frac{π}{6}$ | C. | 2,$\frac{π}{3}$ | D. | 2,$-\frac{π}{3}$ |
分析 利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得所得曲線的解析式,再由周期求出ω,由五點法作圖求出φ的值.
解答 解:將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{12}$個單位長度后,
可得y=sin(ωx+$\frac{ωπ}{12}$+φ)的圖象.
再根據(jù)所得曲線的一部分圖象,可得$\frac{1}{2}•\frac{2π}{ω}$=$\frac{7π}{12}$-$\frac{π}{12}$,∴ω=2.
再根據(jù)五點法作圖可得2•$\frac{π}{12}$+φ=π,∴φ=$\frac{π}{3}$,則ω,φ的值分別為2;$\frac{π}{3}$,
故選:C.
點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點法作圖求出φ的值,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=$\sqrt{-{x^2}-1}$ | B. | y=$\left\{\begin{array}{l}{x^2},x≥0\\ 1,x≤0\end{array}\right.$ | ||
C. | y=$\left\{\begin{array}{l}{x,x≥0}\\{0,-1<x<0}\end{array}\right.$ | D. | y2=x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 24種 | B. | 18種 | C. | 72種 | D. | 36種 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 向左平移$\frac{π}{3}$個單位 | B. | 向左平移$\frac{π}{6}$個單位 | ||
C. | 向右平移$\frac{π}{3}$個單位 | D. | 向右平移$\frac{2π}{3}$個單位 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com