科目:高中數(shù)學 來源: 題型:
.設函數(shù)y=f(x)的定義域為(0,+∞),且對任意的正實數(shù)x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當x>1時,f(x)>0。
(1)求f(1), f()的值;
(2)試判斷y=f(x)在(0,+∞)上的單調性,并加以證明;
(3)一個各項均為正數(shù)的數(shù)列{a??n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項和,求數(shù)列{an}的通項公式;
(4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2009-2010學年度新課標高三下學期數(shù)學單元測試3-文科 題型:解答題
(2010屆棗莊市第一次調研)
已知函數(shù)f(x)對任意的實數(shù)x、y都有f(x+y) =f(x)+f(y)-1,且當x>0 時,f(x)>1.
(1)求證:函數(shù)f(x)在R上是增函數(shù);
(2)若關于x的不等式的解集為{x|-3<x<2=,求f(2009)的值;
(3)在(2)的條件下,設,若數(shù)列從第k項開始的連續(xù)20項 之和等于102,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源:2009-2010學年度新課標高三下學期數(shù)學單元測試3-理科 題型:解答題
已知函數(shù)f(x)對任意的實數(shù)x、y都有f(x+y) =f(x)+f(y)-1,且當x>0 時,
f(x)>1.
(1)求證:函數(shù)f(x)在R上是增函數(shù);
(2)若關于x的不等式的解集為{x|-3<x<2=,求f(2009)的值;
(3)在(2)的條件下,設,若數(shù)列從第k項開始的連續(xù)20項之和等于102,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知定義域為R的函數(shù)f(x)滿足f(-x)= -f(x+4),當x>2時,f(x)單調遞增,如果x1+x2<4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值 ( ) A.恒小于0 B.恒大于0 C.可能為0 D.可正可負 查看答案和解析>> 科目:高中數(shù)學 來源: 題型: 吉林省吉林一中2011屆高三下學期沖刺試題一(數(shù)學理).doc | | |
|