設(shè)橢圓的中心為坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,焦距為2,F(xiàn)為右焦點(diǎn),B1為下頂點(diǎn),B2為上頂點(diǎn),SB1FB2=1
(I)求橢圓的方程;
(Ⅱ)若直線l同時(shí)滿足下列三個(gè)條件:①與直線B1F平行;②與橢圓交于兩個(gè)不同的點(diǎn)P、Q;③S△POQ=
2
3
,求直線l的方程.
(Ⅰ)設(shè)橢圓方程為
x2
a2
+
y2
b2
=1(a>b>0)

由題意知,2c=2,所以c=1.
SB1FB2=1,得
1
2
•2b•1=1
,所以b=1,
從而a2=b2+c2=12+12=2.
所以所求橢圓方程為
x2
2
+y2=1
;
(Ⅱ)設(shè)滿足條件的直線為l.
因?yàn)橹本B1F的斜率等于1,lB1F,故可設(shè)l的方程為y=x+m.
x2
2
+y2=1
y=x+m
,得3x2+4mx+2m2-2=0.
由題意,△=16m2-12(2m2-2)>0,解得m2<3,
x1+x2=-
4m
3
,x1x2=
2m2-2
3

所以,|PQ|=
2
|x1-x2|=
2
(x1-x2)2-4x1x2

=
2
(-
4
3
m)2-
4(2m2-2)
3
=
4
3-m2
3

點(diǎn)O到直線l的距離為d=
|m|
2

S△POQ=
1
2
•d•|PQ|=
1
2
|m|
2
4
3-m2
3

=
2
|m|•
3-m2
3
=
2
3

得m4-3m2+2=0.
解得m2=1或m2=2,所以m=±1或m=±
2
.滿足m2<3,
但當(dāng)m=-1時(shí),直線y=x-1與B1F重合,故舍去.
所以,存在滿足條件的直線l,這樣的直線共3條,其方程為y=x+1,y=x-
2
,y=x+
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C過點(diǎn)P(1,
3
2
),兩個(gè)焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0).
(1)求橢圓C的方程;
(2)過點(diǎn)F1的直線交橢圓于A、B兩點(diǎn),求線段AB的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過(2,0)點(diǎn)且傾斜角為60°的直線與橢圓
x2
5
+
y2
3
=1
相交于A,B兩點(diǎn),則AB中點(diǎn)的坐標(biāo)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=kx-1與雙曲線x2-y2=4沒有公共點(diǎn),則實(shí)數(shù)k的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C1
x2
4
+
y2
3
=1
和拋物線C2:y2=2px(p>0),過點(diǎn)M(1,0)且傾斜角為
π
3
的直線與拋物線交于A、B,與橢圓交于C、D,當(dāng)|AB|:|CD|=5:3時(shí),求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,以
3
2
為離心率的橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右頂點(diǎn)分別為A和B,點(diǎn)P是橢圓位于x軸上方的一點(diǎn),且△PAB的面積最大值為2.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)點(diǎn)Q是橢圓位于x軸下方的一點(diǎn),直線AP、BQ的斜率分別為k1,k2,若k1=7k2,設(shè)△BPQ與△APQ的面積分別為S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn)P(-1,
3
2
)
是橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)上一點(diǎn),F(xiàn)1、F2分別是橢圓E的左、右焦點(diǎn),O是坐標(biāo)原點(diǎn),PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A、B是橢圓E上兩個(gè)動(dòng)點(diǎn),是否存在λ,滿足
PA
+
PB
PO
(0<λ<4,且λ≠2),且M(2,1)到AB的距離為
5
?若存在,求λ值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn),過點(diǎn)F2與x軸不垂直的直線l交橢圓于A、B兩點(diǎn),則△ABF1的周長為4
2

(1)求橢圓的方程;
(2)若C(
1
3
,0),使得|AC|=|BC|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知焦點(diǎn)在x軸上的橢圓
x2
20
+
y2
b2
=1(b>0)
經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)m,使△ABM為直角三角形,若存在,求出m的值,若不存,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案