【題目】下列四個(gè)命題:①直線的斜率,則直線的傾斜角;②直線與以兩點(diǎn)為端點(diǎn)的線段相交,則;③如果實(shí)數(shù)滿足方程,那么的最大值為;④直線與橢圓恒有公共點(diǎn),則的取值范圍是.其中正確命題的序號(hào)是______

【答案】②③

【解析】

由直線傾斜角的范圍判斷①錯(cuò)誤;求出直線恒過的定點(diǎn)M,再求出MAMB所在直線的斜率判斷②正確;由的幾何意義可知是連接圓上的動(dòng)點(diǎn)和原點(diǎn)的連線的斜率,求出過原點(diǎn)的圓的切線的斜率判斷③正確;由直線恒過的定點(diǎn)在橢圓內(nèi)部求解m的取值范圍,結(jié)合圓的條件判斷④錯(cuò)誤.

對于①,由直線的傾斜角范圍是知直線的斜率,則直線的傾斜角錯(cuò)誤;對于②,因?yàn)橹本恒過點(diǎn),,所以,命題正確;對于③,方程表示以為圓心,以為半徑的圓,的幾何意義是連接圓上的動(dòng)點(diǎn)和原點(diǎn)的連線的斜率,設(shè)過原點(diǎn)的圓的切線方程為,由,所以的最大值為,命題正確;對于④,因?yàn)橹本恒過的定點(diǎn),所以要使直線與橢圓恒有公共點(diǎn)則需,解得,但當(dāng)時(shí),方程不是橢圓,所以命題錯(cuò)誤.

故答案為:②③

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,四項(xiàng)參賽作品,只評一項(xiàng)一等獎(jiǎng),在評獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎(jiǎng)”;

乙說:“作品獲得一等獎(jiǎng)”;

丙說:“,兩項(xiàng)作品未獲得一等獎(jiǎng)”;

丁說:“是作品獲得一等獎(jiǎng)”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是某地區(qū)2012年至2018年生活垃圾無害化處理量(單位:萬噸)的折線圖.

注:年份代碼分別表示對應(yīng)年份.

1)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)線性相關(guān)較強(qiáng))加以說明;

2)建立的回歸方程(系數(shù)精確到0.01),預(yù)測2019年該區(qū)生活垃圾無害化處理量.

(參考數(shù)據(jù)),,,,,.

(參考公式)相關(guān)系數(shù),在回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】楊輝三角,又稱帕斯卡三角,是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書中用如圖所示的三角形解釋二項(xiàng)式乘方展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….記作數(shù)列,若數(shù)列的前項(xiàng)和為,則 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一般來說,一個(gè)人腳掌越長,他的身高就越高,現(xiàn)對10名成年人的腳掌與身高進(jìn)行測量,得到數(shù)據(jù)(單位:cm)作為樣本如表所示:

腳掌長(

20

21

22

23

24

25

26

27

28

29

身高(

141

146

154

160

169

176

181

188

197

203

(1)在上表數(shù)據(jù)中,以“腳掌長”為橫坐標(biāo),“身高”為縱坐標(biāo),作出散點(diǎn)圖后,發(fā)現(xiàn)散點(diǎn)在一條直線附近,試求“身高”與“腳掌長”之間的線性回歸方程;

(2)若某人的腳掌長為26.5cm,試估計(jì)此人的身高;

(3)在樣本中,從身高180cm以上的4人中隨機(jī)抽取2人進(jìn)行進(jìn)一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率.

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中已知A(4,O)、B(0,2)、C(-1,0)D(0,-2),點(diǎn)E在線段AB(不含端點(diǎn)),點(diǎn)F在線段CD,E、O、F三點(diǎn)共線.

(1)F為線段CD的中點(diǎn),證明:

(2)“F為線段CD的中點(diǎn),的逆命題是否成立?說明理由;

(3)設(shè),的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,, ODE的中點(diǎn),F的中點(diǎn),平面平面BCED

1)求證:平面 平面

2)線段OC上是否存在點(diǎn)G,使得平面EFG?說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形,的中點(diǎn),平面的中點(diǎn),,

1)證明:平面;

2)如果二面角的正切值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司全年的純利潤為,其中一部分作為獎(jiǎng)金發(fā)給位職工,獎(jiǎng)金分配方案如下首先將職工工作業(yè)績(工作業(yè)績均不相同)從大到小,1排序,1位職工得獎(jiǎng)金,然后再將余額除以發(fā)給第2位職工,按此方法將獎(jiǎng)金逐一發(fā)給每位職工,并將最后剩余部分作為公司發(fā)展基金.

(1)設(shè)為第位職工所得獎(jiǎng)金額,試求并用表示(不必證明);

(2)證明并解釋此不等式關(guān)于分配原則的實(shí)際意義;

(3)發(fā)展基金與有關(guān),記為對常數(shù),當(dāng)變化時(shí),.(可用公式)

查看答案和解析>>

同步練習(xí)冊答案