【題目】如圖,菱形ABCD和直角梯形CDEF所在平面互相垂直, .

(1)求證:;

(2)求四棱錐的體積.

【答案】(1)見解析;(2)

【解析】

(1)本題首先可以通過菱形和直角梯形所在平面互相垂直來證明出平面,然后通過平面證明出,再通過菱形的性質(zhì)證明出,最后通過線面垂直的相關(guān)性質(zhì)即可證明出平面以及;

(2)本題首先可以過點做垂線,垂線就是四棱錐的高,再通過四棱錐的體積公式即可得出結(jié)果。

(1)因為,,所以,

又因為平面平面,且平面平面,

所以平面,

因為平面,所以

因為四邊形是菱形,所以

又因為平面、平面、,所以平面,

又因為平面,所以;

(2)

如圖所示,過點做垂線,垂足為,即,

因為平面平面,且平面平面,平面,

在直角三角形中有,所以,

所以四棱錐的體積

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點F是拋物線C:y2=2px(p>0)的焦點,M(x0,1)C,|MF|=.

(1)p的值;

(2)若直線l經(jīng)過點Q(3,-1)且與C交于A,B(異于M)兩點,證明:直線AM與直線BM的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在長方體中,已知,E、F分別是線段AB、BC上的點,且.

1)求二面角的正切值;

2)求直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為:,為參數(shù)點的極坐標(biāo)為,曲線C的極坐標(biāo)方程為

試將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線C的焦點在直角坐標(biāo)系下的坐標(biāo);

設(shè)直線l與曲線C相交于兩點A,B,點MAB的中點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內(nèi)的交點為M,若.則該雙曲線的離心率為

A. 2B. 3C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時間的中位數(shù)為80

D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓C過點,焦點,圓O的直徑為

(1)求橢圓C及圓O的方程;

(2)設(shè)直線l與圓O相切于第一象限內(nèi)的點P

①若直線l與橢圓C有且只有一個公共點,求點P的坐標(biāo);

②直線l與橢圓C交于兩點.若的面積為,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系中,過點的直線l的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為與曲線C相交于不同的兩點M,N.

(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;

(2)若,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邗江中學(xué)高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.

(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

(2)設(shè)為選出2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案