【題目】已知函數(shù)的圖象在它們的交點處具有相同的切線.

1)求的解析式;

2)若函數(shù)有兩個極值點,,且,求的取值范圍.

【答案】1;(2

【解析】

1)求得兩個函數(shù)的導數(shù),由公切線的斜率相同可得的方程;將切點代入兩個函數(shù),可得的方程;聯(lián)立兩個方程即可求得的值,進而得的解析式;

2)將的解析式代入并求得,由極值點定義可知是方程的兩個不等實根,由韋達定理表示出,結合可得.代入中化簡,分離參數(shù)并構造函數(shù),求得并令求得極值點,由極值點兩側符號判斷單調性,并求得最小值,代入端點值求得最大值,即可求得的取值范圍.

1)根據(jù)題意,函數(shù)

可知,,

兩圖象在點處有相同的切線,

所以兩個函數(shù)切線的斜率相等,即,化簡得,

代入兩個函數(shù)可得,

綜合上述兩式可解得,

所以.

2)函數(shù),定義域為,

,

因為,為函數(shù)的兩個極值點,

所以,是方程的兩個不等實根,

由根與系數(shù)的關系知,,

又已知,所以,

,

式代入得

,

,,

,令,解得,

時,,單調遞減;

時,單調遞增;

所以,

,

,

的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,,,給出以下四個命題:(1是偶函數(shù);(2是偶函數(shù);(3的最小值為;(4有兩個零點;其中真命題的是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式的解集為,且中只有一個整數(shù),則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,點在拋物線上,直線與拋物線C交于A,B兩點,且直線OAOB的斜率之和為

1)求ak的值;

2)若,設直線y軸交于D點,延長MD與拋物線C交于點N,拋物線C在點N處的切線為n,記直線n,x軸圍成的三角形面積為S.求S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學對參加“社會實踐活動”的全體志愿者進行學分考核,因該批志愿者表現(xiàn)良好,大學決定考核只有合格和優(yōu)秀兩個等次,若某志愿者考核合格,授予個學分;考核優(yōu)秀,授予個學分,假設該大學志愿者甲、乙、丙考核優(yōu)秀的概率為、、.他們考核所得的等次相互獨立.

1)求在這次考核中,志愿者甲、乙、丙三人中至少一名考核為優(yōu)秀的概率;

2)記在這次考核中甲、乙、丙三名志愿者所得學分之和為隨機變量,求隨機變量的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論的單調性;

2)若函數(shù)上有且只有一個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在棱錐P-ABCD中,PA平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且ABCD,BAD=90°.

(1)求證:BCPC;

(2)PB與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數(shù)與燒開一壺水所用時間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點圖(如下圖).

1.47

20.6

0.78

2.35

0.81

-19.3

16.2

表中.

1)根據(jù)散點圖判斷,哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數(shù)的回歸方程類型?(不必說明理由)

2)根據(jù)判斷結果和表中數(shù)據(jù),建立關于的回歸方程;

3)若旋轉的弧度數(shù)與單位時間內煤氣輸出量成正比,那么為多少時,燒開一壺水最省煤氣?

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為,.

查看答案和解析>>

同步練習冊答案