如圖,在三棱柱ABC-A′B′C′中,底面ABC是正三角形,AA′⊥底面ABC,且AB=1,AA′=2,則直線BC′與平面ABB′A′所成角的正弦值為
 
考點(diǎn):直線與平面所成的角
專題:空間角
分析:如圖所示,取A′B′的中點(diǎn)D,連接C′D′,BD.利用等邊三角形的性質(zhì)及AA′⊥底面ABC,可得C′D⊥側(cè)面ABB′A′,
于是∠C′BD是直線BC′與平面ABB′A′所成角.利用勾股定理、直角三角形的邊角關(guān)系即可得出.
解答: 解:如圖所示,
取A′B′的中點(diǎn)D,連接C′D′,BD.
∵底面△A′B′C′是正三角形,
∴C′D⊥A′B′.
∵AA′⊥底面ABC,∴A′A⊥C′D.
又AA′∩A′B′=A′,
∴C′D⊥側(cè)面ABB′A′,
∴∠C′BD是直線BC′與平面ABB′A′所成角.
∵等邊△A′B′C′的邊長(zhǎng)為1,C′D=
3
2

在Rt△BB′C′中,BC′=
BB2+BC2
=
5

∴直線BC′與平面ABB′A′所成角的正弦值=
CD
BC
=
15
10

故答案為:
15
10
點(diǎn)評(píng):本題考查了線面垂直的判定與性質(zhì)定理、等邊三角形的性質(zhì)、線面角、勾股定理、直角三角形的邊角關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x2
x2+10
(x∈R)的值域?yàn)?div id="h8zf2in" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了了解某同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對(duì)他的6次數(shù)學(xué)測(cè)試成績(jī)(滿分100分)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,則下列關(guān)于該同學(xué)數(shù)學(xué)成績(jī)的說法正確的是( 。
A、中位數(shù)為83
B、眾數(shù)為85
C、平均數(shù)為85
D、方差為19

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P(x,y)滿足約束條件
x ≥ 0
x-2y ≤ a
x+y ≤ 2
且點(diǎn)P(x,y)所形成區(qū)域的面積為12,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log2x+x-2在(k,k+1)上有零點(diǎn),則整數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,則下列命題正確的是( 。
A、若m∥α,n∥α,則m∥n
B、若m∥n,m⊥α,n?β,則α⊥β
C、若m∥α,m∥β,則α∥β
D、若m∥α,α⊥β,則m⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,an<0,前n項(xiàng)和Sn=-
1
4
(an-1)2

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
n(3-an)
(n∈N+),Tn=b1+b2+…+bn,若對(duì)任意n∈N+,總存在m∈[-1,1]使Tn<m2-2m+t+
1
2
成立,求出t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論中是錯(cuò)誤命題的是( 。
A、命題p:“?x∈R,x2-2≥0”的否定形式為¬p:“?x∈R,x2-2<0”
B、若¬p是q的必要條件,則p是¬q的充分條件
C、“M>N”是“(
2
3
M>(
2
3
N”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
9x-a
3x
的圖象關(guān)于原點(diǎn)對(duì)稱,g(x)=lg(10x+1)+bx是偶函數(shù),則a+b=( 。
A、1
B、-1
C、-
1
2
D、
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案