已知函數(shù)f(x)=loga(a-ax)  (a>1)
(1)求f(x)的定義域、值域.
(2)解不等式f-1(x2-2)>f(x).
分析:(1)對(duì)數(shù)的真數(shù)大于0,可得函數(shù)的定義域,然后求出值域.
(2)先求反函數(shù),然后化簡(jiǎn)不等式,利用函數(shù)單調(diào)性解出x的范圍即可.
解答:解:(1)a-ax>0可得ax<a,又a>1,∴x<1.
∴f(x)的定義域?yàn)椋?∞,1).
又由loga(a-ax)<logaa=1,
∴f(x)<1.∴f(x)的值域?yàn)椋?∞,1).
(2)f(x)=logaa+loga(1-x)=1+loga(1-x)
f(x)-1=loga(1-x)  af(x)-1=1-x  x=1-af(x)-1
所以f-1(x)=1-ax-1f-1(x2-2)=1-ax2-3>1+loga(1-x)
ax2-1=y2<loga
1
1-x
=y1把y2代入y1,有aax2-1=
1
1-x

解得x=0,因?yàn)閒-1(x)的遞減程度小于y1的遞減程度,
所以在x>0時(shí),都滿足f-1(x2-2)>f(x).所以解為x>0
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的定義域和值域,反函數(shù)的知識(shí),計(jì)算量大,容易出錯(cuò),是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對(duì)任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對(duì)于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問(wèn):當(dāng)x≥e時(shí),對(duì)于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問(wèn)是否存在經(jīng)過(guò)原點(diǎn)的直線l,使得l為曲線C的對(duì)稱軸?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案