【題目】已知函數(shù)).

(I)若,求曲線在點處的切線方程;

(II)若上無極值點,求的值;

(III)當時,討論函數(shù)的零點個數(shù),并說明理由.

【答案】(1); (2)時函數(shù)上無零點;當時,函數(shù)上有一個零點;當時,函數(shù)上有兩個零點.

【解析】

(I)由導數(shù)的幾何意義,切線的斜率,先求,,利用直線方程的點斜式求解. (II)因為,所以若上無極值點,則,即,,解得.

(III)討論當時,上的符號, 函數(shù)的單調(diào)性、極值情況,從而分析

函數(shù)的圖像與x軸的交點個數(shù),得出函數(shù)的零點個數(shù).

(I)當時,,

,,,

所以曲線在點處的切線方程為.

(II),,依題意有,即,

,解得.

(III)(1)時,函數(shù)上恒為增函數(shù)且,函數(shù)上無零點.

(2)時:

,,函數(shù)為增函數(shù);

,函數(shù)為減函數(shù);

,,函數(shù)為增函數(shù).

由于,此時只需判定的符號:

時,函數(shù)上無零點;

時,函數(shù)上有一個零點;

時,函數(shù)上有兩個零點.

綜上,時函數(shù)上無零點;

時,函數(shù)上有一個零點;

時,函數(shù)上有兩個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=2sinxxcosxxf'x)為fx)的導數(shù).

(1)求曲線在點A0,f0))處的切線方程;

(2)設,求在區(qū)間[0,π]上的最大值和最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知遞增的等差數(shù)列的前項和為,若,成等比數(shù)列,且.

1)求數(shù)列的通項公式及前項和

2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若定義在R上的偶函數(shù)滿足,且, ,則函數(shù)的零點個數(shù)是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了選拔學生參加“XX市中學生知識競賽,先在本校進行選拔測試,若該校有100名學生參加選拔測試,并根據(jù)選拔測試成績作出如圖所示的頻率分布直方圖.

1)根據(jù)頻率分布直方圖,估算這100名學生參加選拔測試的平均成績;

2)該校推薦選拔測試成績在110以上的學生代表學校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若,求曲線在點處的切線方程;

(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求的取值范圍;

(3)在(2)的條件下,設函數(shù),若在上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)為常數(shù).

(1)當時,求函數(shù)的圖象在點處的切線方程;

(2)若函數(shù)有兩個不同的零點,

①當時,求的最小值;

②當時,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有人玩擲均勻硬幣走跳棋的游戲,棋盤上標有第0站(出發(fā)地),在第1站,第2站,……,第100. 一枚棋子開始在出發(fā)地,棋手每擲一次硬幣,這枚棋子向前跳動一次,若擲出正向,棋子向前跳一站,若擲出反面,棋子向前跳兩站,直到棋子跳到第99站(失敗收容地)或跳到第100站(勝利大本營),該游戲結束. 設棋子跳到第站的概率為.

1)求,;

2)寫出的遞推關系);

3)求玩該游戲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】P是圓上的動點,P點在x軸上的射影是D,點M滿足

1)求動點M的軌跡C的方程,并說明軌跡是什么圖形;

2)過點的直線l與動點M的軌跡C交于不同的兩點A,B,求以OA,OB為鄰邊的平行四邊形OAEB的頂點E的軌跡方程.

查看答案和解析>>

同步練習冊答案