【題目】定義:若函數(shù)y=f(x)在某一區(qū)間D上任取兩個實數(shù)x1、x2 , 且x1≠x2 , 都有 ,則稱函數(shù)y=f(x)在區(qū)間D上具有性質(zhì)L.
(1)寫出一個在其定義域上具有性質(zhì)L的對數(shù)函數(shù)(不要求證明).
(2)對于函數(shù) ,判斷其在區(qū)間(0,+∞)上是否具有性質(zhì)L?并用所給定義證明你的結論.
(3)若函數(shù) 在區(qū)間(0,1)上具有性質(zhì)L,求實數(shù)a的取值范圍.

【答案】
(1)解: (或其它底在(0,1)上的對數(shù)函數(shù))
(2)解:函數(shù) 在區(qū)間(0,+∞)上具有性質(zhì)L.

證明:任取x1、x2∈(0,+∞),且x1≠x2

= =

∵x1、x2∈(0,+∞)且x1≠x2

∴(x1﹣x22>0,2x1x2(x1+x2)>0

>0,

所以函數(shù) 在區(qū)間(0,+∞)上具有性質(zhì)L


(3)解:任取x1、x2∈(0,1),且x1≠x2

= = =

∵x1、x2∈(0,1)且x1≠x2,

∴(x1﹣x22>0,4x1x2(x1+x2)>0

要使上式大于零,必須2﹣ax1x2(x1+x2)>0在x1、x2∈(0,1)上恒成立,

∴a≤1,

即實數(shù)a的取值范圍為(﹣∞,1]


【解析】(1)寫出的函數(shù)是下凹的函數(shù)即可;(2)函數(shù) 在區(qū)間(0,+∞)上具有性質(zhì)L.根據(jù)定義,任取x1、x2∈(0,+∞),且x1≠x2
只需要證明 >0即可;(3)任取x1、x2∈(0,1),且x1≠x2 >0,只需要2﹣ax1x2(x1+x2)>0在x1、x2∈(0,1)上恒成立,即 ,故可求實數(shù)a的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過橢圓 的左右焦點分別作直線 交橢圓于,且.

(1)求證:當直線的斜率與直線的斜率都存在時, 為定值;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正三角形ABC所在平面與梯形BCDE所在平面垂直,,=4 ,,F為棱AE的中點.

(1)求證:平面平面

(2)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某教師有相同的語文參考書3本,相同的數(shù)學參考書4本,從中取出4本贈送給4位學生,每位學生1本,則不同的贈送方法共有( )

A. 15種 B. 20種 C. 48種 D. 60種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在探究實系數(shù)一元二次方程的根與系數(shù)的關系時,可按下述方法進行:

設實系數(shù)一元二次方程……①

在復數(shù)集內(nèi)的根為, ,則方程①可變形為,

展開得.……②

比較①②可以得到:

類比上述方法,設實系數(shù)一元次方程)在復數(shù)集內(nèi)的根為, ,…, ,則這個根的積 __________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=log2 log2 ,x∈(2,8]的值域為(
A.[0,2]
B.[﹣ ,2]
C.(0,2]
D.(﹣ ,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學在研究函數(shù)f(x)= ﹣1(x∈R)時,得出了下面4個結論:①等式f(﹣x)=f(x)在x∈R時恒成立;②函數(shù)f(x)在x∈R上的值域為(﹣1,1];③曲線y=f(x)與g(x)=2x2僅有一個公共點;④若f(x)= ﹣1在區(qū)間[a,b](a,b為整數(shù))上的值域是[0,1],則滿足條件的整數(shù)數(shù)對(a,b)共有5對.其中正確結論的序號有(請將你認為正確的結論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) 的定義域是R,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC的兩頂點坐標A(﹣1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=1(從圓外一點到圓的兩條切線段長相等),動點C的軌跡為曲線M.

(I)求曲線M的方程;

(Ⅱ)設直線BC與曲線M的另一交點為D,當點A在以線段CD為直徑的圓上時,求直線BC的方程.

查看答案和解析>>

同步練習冊答案