在平面直角坐標(biāo)系xOy中,曲線y=x2-6x+1與坐標(biāo)軸的交點都在圓C上.
(1)求圓C的方程;
(2)若圓C與直線x-y+a=0交于A、B兩點,且OA⊥OB,求a的值.
解:(1)曲線y=x2-6x+1與y軸的交點為(0,1),與x軸的交點為(3+2,0),(3-2,0)
故可設(shè)C的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.
則圓C的半徑為=3.
所以圓C的方程為(x-3)2+(y-1)2=9.
(2)設(shè)A(x1,y1),B(x2,y2),其坐標(biāo)滿足方程組
消去y,得到方程
2x2+(2a-8)x+a2-2a+1=0.
由已知可得,判別式Δ=56-16a-4a2>0.從而
x1+x2=4-a,x1x2=.①
由于OA⊥OB,可得x1x2+y1y2=0.
又y1=x1+a,y2=x2+a,所以
2x1x2+a(x1+x2)+a2=0.②
由①,②得a=-1,滿足Δ>0,故a=-1.
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
x2 |
a2 |
y2 |
9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 |
5 |
12 |
13 |
16 |
65 |
16 |
65 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
3 | t |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
16 |
7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com