是否存在正實(shí)數(shù)a,使函數(shù)在[1,+∞)上是單調(diào)函數(shù),若存在,求出a的值;不存在,說(shuō)明理由.

答案:略
解析:

解:假設(shè)存在a滿(mǎn)足題意,任取,且

,∴

顯然不存在常數(shù)a,使恒為負(fù)數(shù).

∴必存在一個(gè)常數(shù)a,使恒為正數(shù).

a3,這時(shí)

∴存在aÎ (0,3],使[1,+∞)上是單調(diào)函數(shù).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
a2x
,g(x)=x+lnx,其中a>0.
(Ⅰ)若x=1是函數(shù)h(x)=f(x)+g(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)是否存在正實(shí)數(shù)a,使對(duì)任意的x1,x2∈[1,e](e為自然對(duì)數(shù)的底數(shù))都有f(x1)≥g(x2)成立,若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax+lnx,g(x)=a2x2
(1)當(dāng)a=-1時(shí),求與函數(shù)y=f(x)圖象相切且與直線x-y+3=0平行的直線方程
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間
(3)是否存在正實(shí)數(shù)a,使f(x)≤g(x)對(duì)一切正實(shí)數(shù)x都成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)

   (1)當(dāng)a=-1時(shí),求函數(shù)圖像上的點(diǎn)到直線距離的最小值;

   (2)是否存在正實(shí)數(shù)a,使對(duì)一切正實(shí)數(shù)x都成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,g(x)=x+lnx,其中a>0.
(Ⅰ)若x=1是函數(shù)h(x)=f(x)+g(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)是否存在正實(shí)數(shù)a,使對(duì)任意的x1,x2∈[1,e](e為自然對(duì)數(shù)的底數(shù))都有f(x1)≥g(x2)成立,若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年廣東省廣州市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù),g(x)=x+lnx,其中a>0.
(Ⅰ)若x=1是函數(shù)h(x)=f(x)+g(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)是否存在正實(shí)數(shù)a,使對(duì)任意的x1,x2∈[1,e](e為自然對(duì)數(shù)的底數(shù))都有f(x1)≥g(x2)成立,若存在,求出實(shí)數(shù)a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案