一個多面體的直觀圖和三視圖如圖所示:

(I)求證:PABD;

(II)連接AC、BD交于點O,在線段PD上是否存在一點Q,使直線OQ與平面ABCD所成的角為30o?若存在,求的值;若不存在,說明理由.

 

【答案】

 (I)由三視圖可知P-ABCD為四棱錐,底面ABCD為正方形,且PAPBPCPD,

        連接AC、BD交于點O,連接PO .     ………………………………………2分

        因為BDAC,BDPO,所以BD⊥平面PAC,………………………………4分

        即BDPA.        ………………………………………………………………6分

(II)由三視圖可知,BC=2,PA=2,假設(shè)存在這樣的點Q,

因為ACOQ,ACOD,   

所以∠DOQ為直線OQ與平面ABCD所成的角   ……8分

在△POD中,PD=2,OD,則∠PDO=60o,

在△DQO中,∠PDO=60o,且∠QOD=30o.所以DPOQ.       ……10分

所以OD,QD

所以.      ……………………………………………………………12分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)一個多面體的直觀圖和三視圖如圖所示,其中M、N分別是AB、AC的中點,G是DF上的一動點.
(Ⅰ)求證:GN⊥AC;
(Ⅱ)求二面角F-MC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示精英家教網(wǎng)
(1)求證:PA⊥BD;
(2)是否在線段PD上存在一Q點,使二面角Q-AC-D的平面角為30°,設(shè)λ=
DQDP
,若存在,求λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示:

(I)求證:PA⊥BD;
(II)連接AC、BD交于點O,在線段PD上是否存在一點Q,使直線OQ與平面ABCD所成的角為30°?若存在,求
|DQ||DP|
的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示,其中M、G分別是AB、DF的中點.
(1)在AD上(含A、D端點)確定一點P,使得GP∥平面FMC;
(2)一只蒼蠅在幾何體ADF-BCE內(nèi)自由飛翔,求它飛入幾何體F-AMCD內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個多面體的直觀圖和三視圖如圖所示,其中M、G分別是AB、DF的中點.精英家教網(wǎng)
(1)求證:CM⊥平面FDM;
(2)在線段AD上(含A、D端點)確定一點P,使得GP∥平面FMC,并給出證明.

查看答案和解析>>

同步練習冊答案