【題目】已知隨機(jī)變量X~B(6,0.4),則當(dāng)η=-2X+1時(shí),D(η)=(  )
A.-1.88
B.-2.88
C.5. 76
D.6.76

【答案】C
【解析】因?yàn)殡S機(jī)變量X~B(6,0.4),所以, ,.故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用離散型隨機(jī)變量及其分布列的相關(guān)知識(shí)可以得到問題的答案,需要掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】10四面體ABCD及其三視圖如圖所示,平行于棱ADBC的平面分別交四面體的棱AB,BDDC,CA于點(diǎn)EF,G,H

1求四面體ABCD的體積

2證明四邊形EFGH是矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩個(gè)旅游景點(diǎn)之間有一條5km的直線型水路,一艘游輪以的速度航行時(shí)考慮到航線安全要求,每小時(shí)使用的燃料費(fèi)用為萬元為常數(shù),且,其他費(fèi)用為每小時(shí)萬元.

若游輪以的速度航行時(shí),每小時(shí)使用的燃料費(fèi)用為萬元,要使每小時(shí)的所有費(fèi)用不超過萬元,求x的取值范圍;

求該游輪單程航行所需總費(fèi)用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某中學(xué)舉行的電腦知識(shí)競(jìng)賽中,將高一年級(jí)兩個(gè)班參賽的學(xué)生成績(jī)進(jìn)行整理后分成五組,繪制如圖所示的頻率分布直方圖.已知圖中從左到右的第一,第三,第四,第五小組的頻率分別是0.30,0.15,0.10,0.05,第二小組的頻數(shù)是40.

(1)補(bǔ)齊圖中頻率分布直方圖,并求這兩個(gè)班參賽學(xué)生的總?cè)藬?shù);

(2)利用頻率分布直方圖,估算本次比賽學(xué)生成績(jī)的平均數(shù)和中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國(guó)南北朝時(shí)期的著作《孫子算經(jīng)》中,對(duì)同余除法有較深的研究.設(shè)

為整數(shù),若除得的余數(shù)相同,則稱對(duì)模同余,記為,,則的值可以是

A. 2015 B. 2016 C. 2017 D. 2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形所在的平面與平面垂直,的交點(diǎn),,且

(Ⅰ)求證:平面

(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為

(Ⅰ)求的解析式;

(Ⅱ)當(dāng),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績(jī)?yōu)?5分.用xn表示編號(hào)為n(n=1,2,…,6)的同學(xué)所得成績(jī),且前5位同學(xué)同學(xué)的成績(jī)?nèi)绫恚?

n

1

2

3

4

5

x0

70

76

72

70

72


(1)求第6位同學(xué)的成績(jī)x6及這6位同學(xué)成績(jī)的標(biāo)準(zhǔn)差s;
(2)若從前5位同學(xué)中,隨機(jī)地選2位同學(xué),求恰有1位同學(xué)成績(jī)?cè)趨^(qū)間[68,75)中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球,每次從袋中任意摸出一個(gè)球 .

(1)采取有放回抽樣方式,從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;

(2)采取不放回抽樣方式,從中摸出兩個(gè)球,求摸得白球的個(gè)數(shù)的均值和方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案