【題目】已知數(shù)列{an}滿足a1=﹣1,a2=1,且
(1)求a5+a6的值;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)的和,求Sn;
(3)設(shè)bn=a2n﹣1+a2n , 是否存正整數(shù)i,j,k(i<j<k),使得bi , bj , bk成等差數(shù)列?若存在,求出所有滿足條件的i,j,k;若不存在,請(qǐng)說明理由.

【答案】
(1)解:由題意,當(dāng)n為奇數(shù)時(shí), ;當(dāng)n為偶數(shù)時(shí),

又a1=﹣1,a2=1,

,

即a5+a6=2


(2)解:①當(dāng)n=2k時(shí),Sn=S2k=(a1+a3+…+a2k﹣1)+(a2+a4+…+a2k

= = =

②當(dāng)n=2k﹣1時(shí),Sn=S2k﹣a2k=

= =


(3)解:由(1),得 (僅b1=0且{bn}遞增).

∵k>j,且k,j∈Z,∴k≥j+1.

①當(dāng)k≥j+2時(shí),bk≥bj+2,若bi,bj,bk成等差數(shù)列,

=

此與bn≥0矛盾.故此時(shí)不存在這樣的等差數(shù)列.

②當(dāng)k=j+1時(shí),bk=bj+1,若bi,bj,bk成等差數(shù)列,

= ,

又∵i<j,且i,j∈Z,∴i≤j﹣1.

若i≤j﹣2,則bi≤bj﹣2,得

≤0,矛盾,∴i=j﹣1.

從而2bj=bj﹣1+bj+1,得 ,

化簡(jiǎn),得3j﹣2=1,解得j=2.

從而,滿足條件的i,j,k只有唯一一組解,即i=1,j=2,k=3


【解析】(1)對(duì)n分情況得出數(shù)列的通項(xiàng)公式,進(jìn)而求出結(jié)果。(2)繼續(xù)對(duì)n分情況討論,得到S n。(3)首先證明{bn}遞增,根據(jù)題意分情況當(dāng)k≥j+2時(shí),假設(shè)成等差數(shù)列成立,得出與bn≥0矛盾的結(jié)論,故這種情況不成立。再討論當(dāng)k=j+1時(shí),假設(shè)成等差數(shù)列成立,根據(jù)已知可推導(dǎo)出只有唯一一組解滿足要求。
【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) (b≠0).
(1)若函數(shù)f(x)在定義域上是單調(diào)函數(shù),求實(shí)數(shù)b的取值范圍;
(2)求函數(shù)f(x)的極值點(diǎn);
(3)令b=1, ,設(shè)A(x1 , y1),B(x2 , y2),C(x3 , y3)是曲線y=g(x)上相異三點(diǎn),其中﹣1<x1<x2<x3 . 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知I為△ABC的內(nèi)心,cosA= ,若 =x +y ,則x+y的最大值為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且cos2B+3cos(A+C)+2=0, ,那么△ABC周長(zhǎng)的最大值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A,ω,φ為常數(shù)且A>0,ω>0, )的部分圖象如圖所示,若 ),則 的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣x2﹣2a,若存在x0∈(﹣∞,a],使f(x0)≥0,則實(shí)數(shù)a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a>0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)),若直線l與圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)與g(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且它們的圖象拼成如圖所示的“Z”形折線段ABOCD,不含A(0,1),B(1,1),O(0,0),C(﹣1,﹣1),D(0,﹣1)五個(gè)點(diǎn).則滿足題意的函數(shù)f(x)的一個(gè)解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求∠C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長(zhǎng);
(3)若c= ,求△ABC的周長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案