【題目】已知數(shù)集具有性質(zhì);對(duì)任意的、,,與兩數(shù)中至少有一個(gè)屬于

1)分別判斷數(shù)集是否具有性質(zhì),并說(shuō)明理由;

2)證明:,且;

3)當(dāng)時(shí),若,求集合

【答案】(1) 集合具有性質(zhì),集合不具有性質(zhì).(2)證明見(jiàn)解析.3.

【解析】

(1)利用兩數(shù)中至少有一個(gè)屬于.即可判斷出結(jié)論.

(2),兩數(shù)中至少有一個(gè)屬于可得屬于.

,那么是集合中某項(xiàng),不符合不符合題意,符合.同理可得:可以得到,,可以得到,倒序相加即可.

(3)當(dāng)時(shí),,當(dāng)時(shí),,A具有性質(zhì)P,,時(shí),,可得, ,,可得,,則有.可得即是首項(xiàng)為,公差為等差數(shù)列是首項(xiàng)為0,公差為等差數(shù)列.

解:(1)在集合中,設(shè)

,具有性質(zhì)

,具有性質(zhì)

,具有性質(zhì)

,具有性質(zhì)

,具有性質(zhì)

,具有性質(zhì)

綜上所述:集合具有性質(zhì);

在集合中,設(shè),

,具有性質(zhì)

,具有性質(zhì)

,具有性質(zhì)

,不具有性質(zhì)

,具有性質(zhì)

,具有性質(zhì)

綜上所述:集合不具有性質(zhì).

故集合具有性質(zhì),集合不具有性質(zhì).

(2) 證明:,

兩數(shù)中至少有一個(gè)屬于”,

不屬于,屬于.

,那么是集合中某項(xiàng),不符合題意,可以.

如果是或者,那么可知,

那么,只能是等于,矛盾.

所以令可以得到,

同理,,可以得到,

倒序相加即可得到

(3)當(dāng)時(shí),,當(dāng)時(shí),,

具有性質(zhì),,時(shí),,

,

,

,

,

從而可得,

,,

,,則有

,

是首項(xiàng)為,公差為等差數(shù)列,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一塊大型的廣告宣傳版面,其形狀是右圖所示的直角梯形.某廠家因產(chǎn)品宣傳的需要,擬投資規(guī)劃出一塊區(qū)域(圖中陰影部分)為產(chǎn)品做廣告,形狀為直角梯形(點(diǎn)在曲線段上,點(diǎn)在線段上).已知, ,其中曲線段是以為頂點(diǎn), 為對(duì)稱軸的拋物線的一部分.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,分別求出曲線段與線段的方程;

(2)求該廠家廣告區(qū)域的最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線上一點(diǎn)到其焦點(diǎn)的距離為5,雙曲線的左頂點(diǎn)為,若雙曲線的一條漸近線與直線平行,則實(shí)數(shù)的值是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左右焦點(diǎn)分別為, 上的動(dòng)點(diǎn)到兩焦點(diǎn)的距離之和為4,當(dāng)點(diǎn)運(yùn)動(dòng)到橢圓的上頂點(diǎn)時(shí),直線恰與以原點(diǎn)為圓心,以橢圓的離心率為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左右頂點(diǎn)分別為,若交直線兩點(diǎn).問(wèn)以為直徑的圓是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出該定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中生調(diào)查了當(dāng)?shù)啬承^(qū)的50戶居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成三組,并作出如下頻率分布直方圖:

1)在直方圖的經(jīng)濟(jì)損失分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以經(jīng)濟(jì)損失落入該區(qū)間的頻率作為經(jīng)濟(jì)損失取該區(qū)間中點(diǎn)值的概率(例如:經(jīng)濟(jì)損失則取,且的概率等于經(jīng)濟(jì)損失落入的頻率),F(xiàn)從當(dāng)?shù)氐木用裰须S機(jī)抽出2戶進(jìn)行捐款援助,設(shè)抽出的2戶的經(jīng)濟(jì)損失的和為,求的分布列和數(shù)學(xué)期望.

2)臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,此高中生調(diào)查的50戶居民捐款情況如下表,在表格空白處填寫正確數(shù)字,并說(shuō)明是否有95%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

經(jīng)濟(jì)損失不超過(guò)4000元

經(jīng)濟(jì)損失超過(guò)4000元

合計(jì)

捐款超過(guò)500元

30

捐款不超過(guò)500元

6

合計(jì)

附:臨界值表參考公式:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的內(nèi)接等邊三角形的面積為(其中為坐標(biāo)原點(diǎn)).

(1)試求拋物線的方程;

(2)已知點(diǎn)兩點(diǎn)在拋物線上,是以點(diǎn)為直角頂點(diǎn)的直角三角形.

①求證:直線恒過(guò)定點(diǎn);

②過(guò)點(diǎn)作直線的垂線交于點(diǎn),試求點(diǎn)的軌跡方程,并說(shuō)明其軌跡是何種曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是矩形, MPD的中點(diǎn),PA⊥平面ABCD,PA=AD= 4, AB = 2.

(1)求證:AM⊥平面MCD;

(2)求直線PC與平面MAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)劃在某水庫(kù)建一座至多安裝4臺(tái)發(fā)電機(jī)的水電站,過(guò)去0年的水文資料顯示,水庫(kù)年入流量年入流量:一年內(nèi)上游來(lái)水與庫(kù)區(qū)降水之和,單位:億立方米都在40以上,其中,不足80的年份有10年,不低于80且不足120的年份有30年,不低于120且不足160的年份有8年,不低于160的年份有2年,將年入流量在以上四段的頻率作為相應(yīng)段的概率,并假設(shè)各年的年入流量相互獨(dú)立.

(1)求在未來(lái)3年中,至多1年的年入流量不低于120的概率;

(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量的限制,并有如下關(guān)系:

若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)發(fā)電機(jī)年利潤(rùn)為500萬(wàn)元;若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)發(fā)電機(jī)年虧損1500萬(wàn)元,水電站計(jì)劃在該水庫(kù)安裝2臺(tái)或3臺(tái)發(fā)電機(jī),你認(rèn)為應(yīng)安裝2臺(tái)還是3臺(tái)發(fā)電機(jī)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)資料:

x

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

(1)畫出散點(diǎn)圖并判斷是否線性相關(guān);

(2)如果線性相關(guān),求線性回歸方程;

(3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案