已知點F(0,1),直線l:y=-1,P為平面上的動點,點P到點F的距離等于點P到直線l的距離.
(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,求|AB|.
分析:(1)用拋物線的定義,求出動點的軌跡方程.
(2)設圓M的圓心坐標,利用半弦長、弦心距、半徑構成直角三角形,滿足勾股定理,以及圓心在軌跡C上,
求出弦長.
解答:解:(1)由題意知,點P的軌跡是頂點在原點,開口向上的拋物線,設其方程為x2=2py,
p
2
=1
,解出p=2.即x2=4y,所以動點P的軌跡C的方程x2=4y.
(2)設圓M的圓心坐標為M(a,b),取AB的中點H.連接MH,BM.則a2=4b.
圓M的半徑為|MD|=
a2+(b-2)2
,|MH|=b.
|AB|=2|BH|=2
|MB|2-|MH|2
=2
a2+(b-2)2-b2

=2
a2-4b+4
=2
4b-4b+4
=4
.  即|AB|=4.
點評:本題考查用定義法求動點的軌跡方程,直線和圓的位置關系,弦長公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點F(0,1),直線l:y=-1,P為平面上的動點,過點P作直線l的垂線,垂足為Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)已知圓M過定點D(0,2),圓心M在軌跡C上運動,且圓M與x軸交于A、B兩點,設|DA|=l1,|DB|=l2,求
l1
l2
+
l2
l1
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知點F(0,1),直線L:y=-2,及圓C:x2+(y-3)2=1.
(1)若動點M到點F的距離比它到直線L的距離小1,求動點M的軌跡E的方程;
(2)過點F的直線g交軌跡E于G(x1,y1)、H(x2,y2)兩點,求證:x1x2 為定值;
(3)過軌跡E上一點P作圓C的切線,切點為A、B,要使四邊形PACB的面積S最小,求點P的坐標及S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•石家莊二模)在平面直角坐標系中,已知點F(0,1),直線l:y=-1,P為平面內動點,過點P作直線l的垂線,垂足為Q,且
QF
•(
QP
+
FP
)=0

(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)過點M(0,m)(m>0)的直線AB與曲線E交于A、B兩個不同點,設∠AFB=θ,若對于所有這樣的直線AB,都有θ∈(
π
2
,π].求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)如圖,已知點F(0,1),直線m:y=-1,P為平面上的動點,過點P作m的垂線,垂足為點Q,且
QP
QF
=
FP
FQ

(1)求動點P的軌跡C的方程;
(2)(文)過軌跡C的準線與y軸的交點M作方向向量為
d
=(a,1)的直線m′與軌跡C交于不同兩點A、B,問是否存在實數(shù)a使得FA⊥FB?若存在,求出a的范圍;若不存在,請說明理由;
(3)(文)在問題(2)中,設線段AB的垂直平分線與y軸的交點為D(0,y0),求y0的取值范圍.

查看答案和解析>>

同步練習冊答案