【題目】設(shè)函數(shù),.
(1)求函數(shù)的圖象在處的切線方程;
(2)求證:方程有兩個(gè)實(shí)數(shù)根;
(3)求證:.
【答案】(1)(2)證明見解析;(3)證明見解析;
【解析】
(1)求導(dǎo)得到,再求得,,寫出切線方程.
(2)令,求導(dǎo),設(shè),則,結(jié)合,得到在上單調(diào)遞增,在上單調(diào)遞減,再利用零點(diǎn)存在定理求解.
(3)設(shè),則,將證明,轉(zhuǎn)化為證明成立,易知恒成立,則要證,只需證為單調(diào)遞減函數(shù),然后用導(dǎo)數(shù)法證明即可.
(1)因?yàn)?/span>,
所以,
所以,,
所以的圖象在處的切線方程為,即.
(2)設(shè),定義域?yàn)?/span>,
,
設(shè),
因?yàn)?/span>,所以,因此在上單調(diào)遞減,
又,所以時(shí),,在上單調(diào)遞增,
時(shí),,在上單調(diào)遞減,
因此,而,
所以在上有一個(gè)零點(diǎn),
而,
所以在上有一個(gè)零點(diǎn),
故方程有兩個(gè)實(shí)數(shù)根.
(3)設(shè),則,
不等式,即為,
設(shè)
當(dāng)時(shí),,當(dāng)時(shí),,
所以
所以
所以恒成立,
所以要證,只需證為單調(diào)遞減函數(shù).
,
設(shè)
當(dāng)時(shí),,當(dāng)時(shí),,
所以
所以恒成立,
則
即,
所以,
所以為單調(diào)遞減函數(shù),
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁、戊五人去參加數(shù)學(xué)、物理、化學(xué)三科競(jìng)賽,每個(gè)同學(xué)只能參加一科競(jìng)賽,若每個(gè)同學(xué)可以自由選擇,則不同的選擇種數(shù)是____;若甲和乙不參加同一科,甲和丙必須參加同一科,且這三科都有人參加,則不同的選擇種數(shù)是_____.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦點(diǎn)為,,P是橢圓C上一點(diǎn).若橢圓C的離心率為,且,的面積為.
(1)求橢圓C的方程;
(2)已知O是坐標(biāo)原點(diǎn),向量,過(guò)點(diǎn)(2,0)的直線l與橢圓C交于M,N兩點(diǎn).若點(diǎn)滿足,,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圓周率π是數(shù)學(xué)中一個(gè)非常重要的數(shù),歷史上許多中外數(shù)學(xué)家利用各種辦法對(duì)π進(jìn)行了估算.現(xiàn)利用下列實(shí)驗(yàn)我們也可對(duì)圓周率進(jìn)行估算.假設(shè)某校共有學(xué)生N人,讓每人隨機(jī)寫出一對(duì)小于1的正實(shí)數(shù)a,b,再統(tǒng)計(jì)出a,b,1能構(gòu)造銳角三角形的人數(shù)M,利用所學(xué)的有關(guān)知識(shí),則可估計(jì)出π的值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)有兩個(gè)零點(diǎn),求a的取值范圍;
(Ⅱ)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo),直線經(jīng)過(guò)點(diǎn),且傾斜角為.
(1)寫出曲線的直角坐標(biāo)方程和直線的標(biāo)準(zhǔn)參數(shù)方程;
(2)直線與曲線交于兩點(diǎn),直線的參數(shù)方程為(t為參數(shù)),直線與曲線交于兩點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)3,g(x)=alnx﹣2x(a∈R).
(1)討論g(x)的單調(diào)性;
(2)是否存在實(shí)數(shù)a,使不等式f(x)≥g(x)恒成立?如果存在,求出a的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且asinB=bsin(A+).
(1)求A;
(2)若b,a,c成等差數(shù)列,△ABC的面積為2,求a.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),我國(guó)電子商務(wù)行業(yè)迎來(lái)了蓬勃發(fā)展的新機(jī)遇,但是電子商務(wù)行業(yè)由于缺乏監(jiān)管,服務(wù)質(zhì)量有待提高.某部門為了對(duì)本地的電商行業(yè)進(jìn)行有效監(jiān)管,調(diào)查了甲、乙兩家電商的某種同類產(chǎn)品連續(xù)十天的銷售額(單位:萬(wàn)元),得到如下莖葉圖:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 |
(1)根據(jù)莖葉圖判斷甲、乙兩家電商對(duì)這種產(chǎn)品的銷售誰(shuí)更穩(wěn)定些?
(2)為了綜合評(píng)估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數(shù)據(jù)中各抽取兩天的銷售數(shù)據(jù),其中銷售額不低于120萬(wàn)元的天數(shù)分別記為,令,求隨機(jī)變量Y的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com