(2011•重慶三模)已知半徑R的球的球面上有三個(gè)點(diǎn),其中任意兩點(diǎn)間的球面距離都等于
πR
3
,且經(jīng)過這三個(gè)點(diǎn)的小圓周長(zhǎng)為4π,則R=( 。
分析:根據(jù)球面上三個(gè)點(diǎn),其中任意兩點(diǎn)間的球面距離都等于
πR
3
,得出AB=BC=CA=R,利用其周長(zhǎng)得到正三角形ABC的外接圓半徑r=2,故可以得到高,設(shè)D是BC的中點(diǎn),在△OBC中,又可以得到角以及邊與R的關(guān)系,在Rt△ABD中,再利用直角三角形的勾股定理,即可解出R.
解答:解:∵球面上三個(gè)點(diǎn),其中任意兩點(diǎn)間的球面距離都等于
πR
3

∴∠ABC=∠BCA=∠CAB=
π
3
,
∴AB=BC=CA=R,設(shè)球心為O,
因?yàn)檎切蜛BC的外徑r=2,故高AD=
3
2
r=3,D是BC的中點(diǎn).
在△OBC中,BO=CO=R,∠BOC=
π
3
,所以BC=BO=R,BD=
1
2
BC=
1
2
R.
在Rt△ABD中,AB=BC=R,所以由AB2=BD2+AD2,得R2=
1
4
R2+9,所以R=2
3

故選B.
點(diǎn)評(píng):本題考查對(duì)球的性質(zhì)認(rèn)識(shí)及利用,以及學(xué)生的空間想象能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)若(x-
2ax
)6
的展開式中常數(shù)項(xiàng)為-160,則常數(shù)a=
1
1
,展開式中各項(xiàng)系數(shù)之和為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)已知直線y=kx(k>0)與函數(shù)y=|sinx|的圖象恰有三個(gè)公共點(diǎn)A(x1,y1),B(x2,y2),C(x3,y3)其中x1<x2<x3,則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)若函數(shù)y=f(x)的導(dǎo)數(shù)f′(x)=6x2+5,則f(x)可以是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)設(shè)函數(shù)f(x)=
2x+3
3x-1
,則f-1(1)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)設(shè)函數(shù)f(x)=
23
x3+x2
+ax+b(x>-1).
(I)若函數(shù)f(x)在其定義域上是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(II)若函數(shù)f(x)在其定義域上既有極大值又有極小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案