分析 (1)根據(jù)三角恒等變換化簡sinB(tanA+tanC)=tanAtanC,再利用正弦定理可得b2=ac;
(2)根據(jù)題意求出a、c和b的值,利用余弦定理求出cosB,再根據(jù)同角的三角函數(shù)關(guān)系求出sinB,計算△ABC的面積即可.
解答 解:(1)證明:在△ABC中,由于sinB(tanA+tanC)=tanAtanC,
所以sinB($\frac{sinA}{cosA}$+$\frac{sinC}{cosC}$)=$\frac{sinA}{cosA}$•$\frac{sinC}{cosC}$,
因此sinB(sinAcosC+cosAsinC)=sinAsinC;
又A+B+C=π,
所以sin(A+C)=sinB,
因此sin2B=sinAsinC,
由正弦定理可得b2=ac;-----(6分)
(2)因為a=2c=2,
所以a=2,c=1,
又b2=ac,所以b=$\sqrt{2}$;
由余弦定理得cosB=$\frac{{a}^{2}{+c}^{2}{-b}^{2}}{2ac}$=$\frac{3}{4}$,
又因為0<B<π,所以sinB=$\frac{\sqrt{7}}{4}$;
所以△ABC的面積為S=$\frac{1}{2}$acsinB=$\frac{\sqrt{7}}{4}$.-----(12分)
點評 本題考查了三角恒等變換以及正弦、余弦定理的應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{a}$<$\frac{1}$ | B. | a2>ab | C. | $\frac{1}{{a{b^2}}}$>$\frac{1}{{{a^2}b}}$ | D. | a2>b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{2π}{3}$,0) | B. | ($\frac{2π}{3}$,0) | C. | ($\frac{π}{12}$,0) | D. | (-$\frac{π}{6}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com