10.將函數(shù)f(x)=$\sqrt{2}$sin2x-$\sqrt{2}$cos2x+1的圖象向左平移$\frac{π}{4}$個單位,再向下平移1個單位,得到函數(shù)y=g(x)的圖象,則下列關(guān)予函數(shù)y=g(x)的說法錯誤的是(  )
A.函數(shù)y=g(x)的最小正周期為π
B.函數(shù)y=g(x)的圖象的一條對稱軸為直線x=$\frac{π}{8}$
C.${∫}_{0}^{\frac{π}{2}}$g(x)dx=$\sqrt{2}$
D.函數(shù)y=g(x)在區(qū)間[$\frac{π}{12}$,$\frac{5π}{8}$]上單調(diào)遞減

分析 利用兩角差的正弦函數(shù)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得g(x),利用正弦函數(shù)的圖象和性質(zhì)逐一分析各個選項即可得解.

解答 解:把f(x)=$\sqrt{2}$sin2x-$\sqrt{2}$cos2x+1=2sin(2x-$\frac{π}{4}$)+1的圖象向左平移$\frac{π}{4}$個單位,
得到函數(shù)y=2sin[2(x+$\frac{π}{4}$)-$\frac{π}{4}$]+1=2sin(2x+$\frac{π}{4}$)+1的圖象,
再向下平移1個單位,得到函數(shù)y=g(x)=2sin(2x+$\frac{π}{4}$)的圖象,
對于A,由于T=$\frac{2π}{2}=π$,故正確;
對于B,由2x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,解得:x=$\frac{kπ}{2}$+$\frac{π}{8}$,k∈Z,可得:當(dāng)k=0時,y=g(x)的圖象的一條對稱軸為直線x=$\frac{π}{8}$,故正確;
對于C,${∫}_{0}^{\frac{π}{2}}$g(x)dx=${∫}_{0}^{\frac{π}{2}}$2sin(2x+$\frac{π}{4}$)dx=-cos(2x+$\frac{π}{4}$)|${\;}_{0}^{\frac{π}{2}}$=-(cos$\frac{5π}{4}$-cos$\frac{π}{4}$)=$\sqrt{2}$,故正確;
對于D,由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{3π}{2}$,k∈Z,解得:kπ+$\frac{π}{8}$≤x≤kπ+$\frac{5π}{8}$,k∈Z,可得函數(shù)y=g(x)在區(qū)間[$\frac{π}{8}$,$\frac{5π}{8}$]上單調(diào)遞減,故錯誤.
故選:D.

點評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,函數(shù)y=Asin(ωx+φ)的圖象的對稱性,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.若直線ax-y-a+3=0將關(guān)于x,y的不等式組$\left\{\begin{array}{l}{x-2y+5≥0}\\{x+y-1≥0}\\{x-y+1≤0}\end{array}\right.$表示的平面區(qū)域分成面積相等的兩部分,則z=4x-ay的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,∠DAB為直角,AB∥CD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點.
(Ⅰ)證明:AB⊥平面BEF;
(Ⅱ)若PA=$\frac{2\sqrt{5}}{5}$,求二面角E-BD-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若一個幾何體的三視圖如下圖所示,則這個幾何體是( 。
A.三棱錐B.四棱錐C.三棱柱D.四棱柱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程為y=±$\frac{1}{2}$x,則雙曲線C的離心率為(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{6}}{2}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$過點$({1,\frac{3}{2}})$,直線l:y=kx+1(k≠0)與橢圓E交于A,B兩點,當(dāng)k=1時,橢圓E的右焦點到直線l的距離為$\sqrt{2}$.
(1)求橢圓E的方程;
(2)設(shè)點A關(guān)于y軸的對稱點為A',試問:直線A'B是否恒過y軸上的一個定點?若是,求出定點坐標(biāo);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是平行四邊形,$∠BAD={60°},AB=2,PD=\sqrt{3},AD=BD$,O為AC與BD的交點,E為棱PB上一點.
(1)證明:平面EAC⊥平面PBD;
(2)若PE=2EB,求二面角E-AC-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-4y+3≥0}\\{x+y≥0}\\{x≥1}\end{array}\right.$,目標(biāo)函數(shù)z=2x+y,則( 。
A.z的最小值為3,z無最大值B.z的最小值為1,最大值為3
C.z的最小值為3,z無最小值D.z的最小值為1,z無最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=Asin(wx+φ)+B(A>0,w>0,|φ|<\frac{π}{2})$的 部分圖象如圖所示:
(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間和對稱中心坐標(biāo);
(3)將f(x)的圖象向左平移$\frac{π}{6}$個單位,在將橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個單位,得到函數(shù)g(x)的圖象,求函數(shù)y=g(x)在$x∈[0,\frac{7π}{6}]$上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案